516 research outputs found
Male reproductive health and environmental xenoestrogens
EHP is a publication of the U.S. government. Publication of EHP lies in the public domain and is therefore without copyright.
Research articles from EHP may be used freely; however, articles from the News section of EHP may contain photographs or figures copyrighted by other commercial organizations and individuals that may not be used without obtaining prior approval from both the EHP editors and the holder of the copyright.
Use of any materials published in EHP should be acknowledged (for example, "Reproduced with permission from Environmental Health Perspectives") and a reference provided for the article from which the material was reproduced.Male reproductive health has deteriorated in many countries during the last few decades. In the 1990s, declining semen quality has been reported from Belgium, Denmark, France, and Great Britain. The incidence of testicular cancer has increased during the same time incidences of hypospadias and cryptorchidism also appear to be increasing. Similar reproductive problems occur in many wildlife species. There are marked geographic differences in the prevalence of male reproductive disorders. While the reasons for these differences are currently unknown, both clinical and laboratory research suggest that the adverse changes may be inter-related and have a common origin in fetal life or childhood. Exposure of the male fetus to supranormal levels of estrogens, such as diethlylstilbestrol, can result in the above-mentioned reproductive defects. The growing number of reports demonstrating that common environmental contaminants and natural factors possess estrogenic activity presents the working hypothesis that the adverse trends in male reproductive health may be, at least in part, associated with exposure to estrogenic or other hormonally active (e.g., antiandrogenic) environmental chemicals during fetal and childhood development. An extensive research program is needed to understand the extent of the problem, its underlying etiology, and the development of a strategy for prevention and intervention.Supported by EU Contract BMH4-CT96-0314
Modality matters for the expression of inducible defenses: introducing a concept of predator modality
Background: Inducible defenses are a common and widespread form of phenotypic plasticity. A fundamental factor driving their evolution is an unpredictable and heterogeneous predation pressure. This heterogeneity is often used synonymously to quantitative changes in predation risk, depending on the abundance and impact of predators. However, differences in `modality', that is, the qualitative aspect of natural selection caused by predators, can also cause heterogeneity. For instance, predators of the small planktonic crustacean Daphnia have been divided into two functional groups of predators: vertebrates and invertebrates. Predators of both groups are known to cause different defenses, yet predators of the same group are considered to cause similar responses. In our study we question that thought and address the issue of how multiple predators affect the expression and evolution of inducible defenses. Results: We exposed D. barbata to chemical cues released by Triops cancriformis and Notonecta glauca, respectively. We found for the first time that two invertebrate predators induce different shapes of the same morphological defensive traits in Daphnia, rather than showing gradual or opposing reaction norms. Additionally, we investigated the adaptive value of those defenses in direct predation trials, pairing each morphotype (non-induced, Triops-induced, Notonecta-induced) against the other two and exposed them to one of the two predators. Interestingly, against Triops, both induced morphotypes offered equal protection. To explain this paradox we introduce a `concept of modality' in multipredator regimes. Our concept categorizes two-predator-prey systems into three major groups (functionally equivalent, functionally inverse and functionally diverse). Furthermore, the concept includes optimal responses and costs of maladaptions of prey phenotypes in environments where both predators co-occur or where they alternate. Conclusion: With D. barbata, we introduce a new multipredator-prey system with a wide array of morphological inducible defenses. Based on a `concept of modality', we give possible explanations how evolution can favor specialized defenses over a general defense. Additionally, our concept not only helps to classify different multipredator-systems, but also stresses the significance of costs of phenotype-environment mismatching in addition to classic `costs of plasticity'. With that, we suggest that `modality' matters as an important factor in understanding and explaining the evolution of inducible defenses
The Role of North Carolina Medical Schools in Producing Primary Care Physicians for the State
The role of PAR2 in osteoblast differentiation versus function
Studies have revealed a bone-specific role for protease activated receptor 2 (PAR2) in the development of murine osteoarthritis. Notably, the absence of PAR2 leads to reduced osteosclerosis and osteophytogenesis. Although PAR2 can enhance osteoblast differentiation and callus formation during repair, there is no evidence for a role in the maintenance of the adult skeleton. The aim of this study was to investigate the role of PAR2 in mature osteoblasts. Osteoblast-PAR2 conditional knockout mice (PAR2ob/ob) were generated, and femur and tibia profiled at 5, 14 and 62-weeks. At 5-weeks, PAR2ob/ob showed significantly lower trabecular bone density (7.6%±0.9) in comparison to floxed controls (11.9%±2.4)(P=0.01). However, this difference resolved by 14-weeks. Aged mice (62-weeks) showed progressive bone loss, however, this was inconsistent across the floxed and PAR2ob/ob. Controls lost 51% of trabecular bone whilst PAR2ob/ob only lost 35% (P=0.004). To investigate additional cellular contributors to skeletal maintenance, chondrocyte-specific PAR2 knockouts were also generated and profiled. In this setting the opposite effect was observed; i.e., trabecular bone density was the same at 5-weeks and significantly decreased after 14-weeks. Providing a potential explanation for the lack of a bone phenotype in adult PAR2-global knockout mice. Finally, in vitro studies were undertaken to investigate mineralisation in a range of osteoblast states (i.e., bone marrow, neonatal calvarial osteoblasts and aged osteoblasts extracted from long bones). In the absence of PAR2, bone marrow cultures and neonatal calvarial pre-osteoblasts showed significantly lower alkaline phosphatase (WT 86.6±18, PAR2-/- 47.6±4, P=0.02) and mineralisation (WT 5.3±2.7, PAR2-/- 12.2±5, P=0.02), whilst mature differentiated aged osteoblasts had a 2 fold increase in mineral formation (P=0.03). In summary, these data highlight the difference between osteoblast differentiation and function, as well as the importance of age in the osteoblast. We hypothesise that whilst PAR2 enhances osteoblast differentiation, it inhibits the function of mature osteoblasts
Gene therapy for monogenic liver diseases: clinical successes, current challenges and future prospects
Over the last decade, pioneering liver-directed gene therapy trials for haemophilia B have achieved sustained clinical improvement after a single systemic injection of adeno-associated virus (AAV) derived vectors encoding the human factor IX cDNA. These trials demonstrate the potential of AAV technology to provide long-lasting clinical benefit in the treatment of monogenic liver disorders. Indeed, with more than ten ongoing or planned clinical trials for haemophilia A and B and dozens of trials planned for other inherited genetic/metabolic liver diseases, clinical translation is expanding rapidly. Gene therapy is likely to become an option for routine care of a subset of severe inherited genetic/metabolic liver diseases in the relatively near term. In this review, we aim to summarise the milestones in the development of gene therapy, present the different vector tools and their clinical applications for liver-directed gene therapy. AAV-derived vectors are emerging as the leading candidates for clinical translation of gene delivery to the liver. Therefore, we focus on clinical applications of AAV vectors in providing the most recent update on clinical outcomes of completed and ongoing gene therapy trials and comment on the current challenges that the field is facing for large-scale clinical translation. There is clearly an urgent need for more efficient therapies in many severe monogenic liver disorders, which will require careful risk-benefit analysis for each indication, especially in paediatrics
Organic pollutants in sea-surface microlayer and aerosol in thecoastal environment of Leghorn—(Tyrrhenian Sea)
The levels of dissolved and particle-associated n-alkanes, alkylbenzenes, phthalates, PAHs, anionic surfactants and
surfactant fluorescent organic matter ŽSFOM. were measured in sea-surface microlayer ŽSML. and sub-surface water ŽSSL.
samples collected in the Leghorn marine environment in September and October 1999.
Nine stations, located in the Leghorn harbour and at increasing distances from the Port, were sampled three times on the
same day. At all the stations, SML concentrations of the selected organic compounds were significantly higher than SSL
values and the enrichment factors ŽEFsSML concentrationrSSL concentration. were greater in the particulate phase than
in the dissolved phase.
SML concentrations varied greatly among the sampling sites, the highest levels Žn-alkanes 3674 mgrl, phthalates 177
mgrl, total PAHs 226 mgrl. being found in the particulate phase in the Leghorn harbour.
To improve the knowledge on pollutant exchanges between sea-surface waters and atmosphere, the validity of spray drop
adsorption model ŽSDAM. was verified for SFOM, surface-active agents, such as phthalates, and compounds which can
interact with SFOM, such as n-alkanes and PAHs. q2001 Elsevier Science B.V. All rights reserved
Recommended from our members
Gut microbiota functions: metabolism of nutrients and other food components
The diverse microbial community that inhabits the human gut has an extensive metabolic repertoire that is distinct from, but complements the activity of mammalian enzymes in the liver and gut mucosa and includes functions essential for host digestion. As such, the gut microbiota is a key factor in shaping the biochemical profile of the diet and, therefore, its impact on host health and disease. The important role that the gut microbiota appears to play in human metabolism and health has stimulated research into the identification of specific microorganisms involved in different processes, and the elucidation of metabolic pathways, particularly those associated with metabolism of dietary components and some host-generated substances. In the first part of the review, we discuss the main gut microorganisms, particularly bacteria, and microbial pathways associated with the metabolism of dietary carbohydrates (to short chain fatty acids and gases), proteins, plant polyphenols, bile acids, and vitamins. The second part of the review focuses on the methodologies, existing and novel, that can be employed to explore gut microbial pathways of metabolism. These include mathematical models, omics techniques, isolated microbes, and enzyme assays
Laparoscopy in management of appendicitis in high-, middle-, and low-income countries: a multicenter, prospective, cohort study.
BACKGROUND: Appendicitis is the most common abdominal surgical emergency worldwide. Differences between high- and low-income settings in the availability of laparoscopic appendectomy, alternative management choices, and outcomes are poorly described. The aim was to identify variation in surgical management and outcomes of appendicitis within low-, middle-, and high-Human Development Index (HDI) countries worldwide. METHODS: This is a multicenter, international prospective cohort study. Consecutive sampling of patients undergoing emergency appendectomy over 6 months was conducted. Follow-up lasted 30 days. RESULTS: 4546 patients from 52 countries underwent appendectomy (2499 high-, 1540 middle-, and 507 low-HDI groups). Surgical site infection (SSI) rates were higher in low-HDI (OR 2.57, 95% CI 1.33-4.99, p = 0.005) but not middle-HDI countries (OR 1.38, 95% CI 0.76-2.52, p = 0.291), compared with high-HDI countries after adjustment. A laparoscopic approach was common in high-HDI countries (1693/2499, 67.7%), but infrequent in low-HDI (41/507, 8.1%) and middle-HDI (132/1540, 8.6%) groups. After accounting for case-mix, laparoscopy was still associated with fewer overall complications (OR 0.55, 95% CI 0.42-0.71, p < 0.001) and SSIs (OR 0.22, 95% CI 0.14-0.33, p < 0.001). In propensity-score matched groups within low-/middle-HDI countries, laparoscopy was still associated with fewer overall complications (OR 0.23 95% CI 0.11-0.44) and SSI (OR 0.21 95% CI 0.09-0.45). CONCLUSION: A laparoscopic approach is associated with better outcomes and availability appears to differ by country HDI. Despite the profound clinical, operational, and financial barriers to its widespread introduction, laparoscopy could significantly improve outcomes for patients in low-resource environments. TRIAL REGISTRATION: NCT02179112
Preclinical evaluation of FLT190, a liver-directed AAV gene therapy for Fabry disease
Fabry disease is an X-linked lysosomal storage disorder caused by loss of alpha-galactosidase A (α-Gal A) activity and is characterized by progressive accumulation of glycosphingolipids in multiple cells and tissues. FLT190, an investigational gene therapy, is currently being evaluated in a Phase 1/2 clinical trial in patients with Fabry disease (NCT04040049). FLT190 consists of a potent, synthetic capsid (AAVS3) containing an expression cassette with a codon-optimized human GLA cDNA under the control of a liver-specific promoter FRE1 (AAV2/S3-FRE1-GLAco). For mouse studies FLT190 genome was pseudotyped with AAV8 for efficient transduction. Preclinical studies in a murine model of Fabry disease (Gla-deficient mice), and non-human primates (NHPs) showed dose-dependent increases in plasma α-Gal A with steady-state observed 2 weeks following a single intravenous dose. In Fabry mice, AAV8-FLT190 treatment resulted in clearance of globotriaosylceramide (Gb3) and globotriaosylsphingosine (lyso-Gb3) in plasma, urine, kidney, and heart; electron microscopy analyses confirmed reductions in storage inclusion bodies in kidney and heart. In NHPs, α-Gal A expression was consistent with the levels of hGLA mRNA in liver, and no FLT190-related toxicities or adverse events were observed. Taken together, these studies demonstrate preclinical proof-of-concept of liver-directed gene therapy with FLT190 for the treatment of Fabry disease
- …
