54 research outputs found

    The eClinical Care Pathway Framework: A novel structure for creation of online complex clinical care pathways and its application in the management of sexually transmitted infections.

    Get PDF
    Despite considerable international eHealth impetus, there is no guidance on the development of online clinical care pathways. Advances in diagnostics now enable self-testing with home diagnosis, to which comprehensive online clinical care could be linked, facilitating completely self-directed, remote care. We describe a new framework for developing complex online clinical care pathways and its application to clinical management of people with genital chlamydia infection, the commonest sexually transmitted infection (STI) in England.Using the existing evidence-base, guidelines and examples from contemporary clinical practice, we developed the eClinical Care Pathway Framework, a nine-step iterative process. Step 1: define the aims of the online pathway; Step 2: define the functional units; Step 3: draft the clinical consultation; Step 4: expert review; Step 5: cognitive testing; Step 6: user-centred interface testing; Step 7: specification development; Step 8: software testing, usability testing and further comprehension testing; Step 9: piloting. We then applied the Framework to create a chlamydia online clinical care pathway (Online Chlamydia Pathway).Use of the Framework elucidated content and structure of the care pathway and identified the need for significant changes in sequences of care (Traditional: history, diagnosis, information versus Online: diagnosis, information, history) and prescribing safety assessment. The Framework met the needs of complex STI management and enabled development of a multi-faceted, fully-automated consultation.The Framework provides a comprehensive structure on which complex online care pathways such as those needed for STI management, which involve clinical services, public health surveillance functions and third party (sexual partner) management, can be developed to meet national clinical and public health standards. The Online Chlamydia Pathway's standardised method of collecting data on demographics and sexual behaviour, with potential for interoperability with surveillance systems, could be a powerful tool for public health and clinical management.UKCRC Translational Infection Research (TIR) Initiative supported by the Medical Research Council, eSTI2 Consortium (Grant Number G0901608)

    Identification of actinomycetes from plant rhizospheric soils with inhibitory activity against Colletotrichum spp., the causative agent of anthracnose disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Colletotrichum </it>is one of the most widespread and important genus of plant pathogenic fungi worldwide. Various species of <it>Colletotrichum </it>are the causative agents of anthracnose disease in plants, which is a severe problem to agricultural crops particularly in Thailand. These phytopathogens are usually controlled using chemicals; however, the use of these agents can lead to environmental pollution. Potential non-chemical control strategies for anthracnose disease include the use of bacteria capable of producing anti-fungal compounds such as actinomycetes spp., that comprise a large group of filamentous, Gram positive bacteria from soil. The aim of this study was to isolate actinomycetes capable of inhibiting the growth of <it>Colletotrichum </it>spp, and to analyze the diversity of actinomycetes from plant rhizospheric soil.</p> <p>Results</p> <p>A total of 304 actinomycetes were isolated and tested for their inhibitory activity against <it>Colletotrichum gloeosporioides </it>strains DoA d0762 and DoA c1060 and <it>Colletotrichum capsici </it>strain DoA c1511 which cause anthracnose disease as well as the non-pathogenic <it>Saccharomyces cerevisiae </it>strain IFO 10217. Most isolates (222 out of 304, 73.0%) were active against at least one indicator fungus or yeast. Fifty four (17.8%) were active against three anthracnose fungi and 17 (5.6%) could inhibit the growth of all three fungi and <it>S. cerevisiae </it>used in the test. Detailed analysis on 30 selected isolates from an orchard at Chanthaburi using the comparison of 16S rRNA gene sequences revealed that most of the isolates (87%) belong to the genus <it>Streptomyces </it>sp., while one each belongs to <it>Saccharopolyspora </it>(strain SB-2) and <it>Nocardiopsis </it>(strain CM-2) and two to <it>Nocardia </it>(strains BP-3 and LK-1). Strains LC-1, LC-4, JF-1, SC-1 and MG-1 exerted high inhibitory activity against all three anthracnose fungi and yeast. In addition, the organic solvent extracts prepared from these five strains inhibited conidial growth of the three indicator fungi. Preliminary analysis of crude extracts by high performance liquid chromatography (HPLC) indicated that the sample from strain JF-1 may contain a novel compound. Phylogenetic analysis revealed that this strain is closely related to <it>Streptomyces cavurensis </it>NRRL 2740 with 99.8% DNA homology of 16S rRNA gene (500 bp).</p> <p>Conclusion</p> <p>The present study suggests that rhizospheric soil is an attractive source for the discovery of a large number of actinomycetes with activity against <it>Colletotrichum </it>spp. An interesting strain (JF-1) with high inhibitory activity has the potential to produce a new compound that may be useful in the control of <it>Colletotrichum </it>spp.</p

    Identifying variation in resistance to the take-all fungus, Gaeumannomyces graminis var. tritici, between different ancestral and modern wheat species

    Get PDF
    Background: Ancestral wheat relatives are important sources of genetic diversity for the introduction of novel traits for the improvement of modern bread wheat. In this study the aim was to assess the susceptibility of 34 accessions of the diploid wheat Triticum monococcum (A genome) to Gaeumannomyces graminis var. tritici (Ggt), the causal agent of take-all disease. The second aim was to explore the susceptibility of tetraploid wheat (T. durum) and the B genome progenitor species Aegilops speltoides to Ggt. Results: Field trials, conducted over 5 years, identified seven T. monococcum accessions with a good level of resistance to take-all when exposed to natural inoculum under UK field conditions. All other accessions were highly susceptible or did not exhibit a consistent phenotype across years. DArT marker genotyping revealed that whole genome diversity was not closely related to resistance to take-all within T. monococcum, suggesting that multiple genetic sources of resistance may exist within the species. In contrast the tetraploid wheat cultivars and Ae. speltoides were all highly susceptible to the disease, including those with known elevated levels of benzoxazinoids. Conclusions: The diploid wheat species T. monococcum may provide a genetic source of resistance to take-all disease that could be utilised to improve the performance of T. aestivum in high disease risk situations. This represents an extremely valuable resource to achieve economic and sustainable genetic control of this root disease
    corecore