125 research outputs found
Multi-level evidence of an allelic hierarchy of USH2A variants in hearing, auditory processing and speech/language outcomes.
Language development builds upon a complex network of interacting subservient systems. It therefore follows that variations in, and subclinical disruptions of, these systems may have secondary effects on emergent language. In this paper, we consider the relationship between genetic variants, hearing, auditory processing and language development. We employ whole genome sequencing in a discovery family to target association and gene x environment interaction analyses in two large population cohorts; the Avon Longitudinal Study of Parents and Children (ALSPAC) and UK10K. These investigations indicate that USH2A variants are associated with altered low-frequency sound perception which, in turn, increases the risk of developmental language disorder. We further show that Ush2a heterozygote mice have low-level hearing impairments, persistent higher-order acoustic processing deficits and altered vocalizations. These findings provide new insights into the complexity of genetic mechanisms serving language development and disorders and the relationships between developmental auditory and neural systems
WNT signalling in prostate cancer
Genome sequencing and gene expression analyses of prostate tumours have highlighted the potential importance of genetic and epigenetic changes observed in WNT signalling pathway components in prostate tumours-particularly in the development of castration-resistant prostate cancer. WNT signalling is also important in the prostate tumour microenvironment, in which WNT proteins secreted by the tumour stroma promote resistance to therapy, and in prostate cancer stem or progenitor cells, in which WNT-β-catenin signals promote self-renewal or expansion. Preclinical studies have demonstrated the potential of inhibitors that target WNT receptor complexes at the cell membrane or that block the interaction of β-catenin with lymphoid enhancer-binding factor 1 and the androgen receptor, in preventing prostate cancer progression. Some WNT signalling inhibitors are in phase I trials, but they have yet to be tested in patients with prostate cancer
Restoring tibiofemoral alignment during ACL reconstruction results in better knee biomechanics
"Published online: 24 October 2017"PURPOSE:
Anterior cruciate ligament (ACL) reconstruction (ACLR) aims to restore normal knee joint function, stability and biomechanics and in the long term avoid joint degeneration. The purpose of this study is to present the anatomic single bundle (SB) ACLR that emphasizes intraoperative correction of tibiofemoral subluxation that occurs after ACL injury. It was hypothesized that this technique leads to optimal outcomes and better restoration of pathological tibiofemoral joint movement that results from ACL deficiency (ACLD).
METHODS:
Thirteen men with unilateral ACLD were prospectively evaluated before and at a mean follow-up of 14.9 (SD = 1.8) months after anatomic SB ACLR with bone patellar tendon bone autograft. The anatomic ACLR replicated the native ACL attachment site anatomy and graft orientation. Emphasis was placed on intraoperative correction of tibiofemoral subluxation by reducing anterior tibial translation (ATT) and internal tibial rotation. Function was measured with IKDC, Lysholm and the Tegner activity scale, ATT was measured with the KT-1000 arthrometer and tibial rotation (TR) kinematics were measured with 3Dmotion analysis during a high-demand pivoting task.
RESULTS:
The results showed significantly higher TR of the ACL-deficient knee when compared to the intact knee prior to surgery (12.2° ± 3.7° and 10.7° ± 2.6° respectively, P = 0.014). Postoperatively, the ACLR knee showed significantly lower TR as compared to the ACL-deficient knee (9.6°±3.1°, P = 0.001) but no difference as compared to the control knee (n.s.). All functional scores were significantly improved and ATT was restored within normal values (P < 0.001).
CONCLUSIONS:
Intraoperative correction of tibiofemoral subluxation that results after ACL injury is an important step during anatomic SB ACLR. The intraoperative correction of tibiofemoral subluxation along with the replication of native ACL anatomy results in restoration of rotational kinematics of ACLD patients to normal levels that are comparable to the control knee. These results indicate that the reestablishment of tibiofemoral alignment during ACLR may be an important step that facilitates normal knee kinematics postoperatively.
LEVEL OF EVIDENCE:
Level II, prospective cohort study.The authors gratefully acknowledge the funding support from the Hellenic Association of Orthopaedic Surgery and
Traumatology (HAOST-EEXOT)info:eu-repo/semantics/publishedVersio
Mechanosensitivity during lower extremity neurodynamic testing is diminished in individuals with Type 2 Diabetes Mellitus and peripheral neuropathy: a cross sectional study
<p>Abstract</p> <p>Background</p> <p>Type 2 Diabetes Mellitus (T2DM) and diabetic symmetrical polyneuropathy (DSP) impact multiple modalities of sensation including light touch, temperature, position sense and vibration perception. No study to date has examined the mechanosensitivity of peripheral nerves during limb movement in this population. The objective was to determine the unique effects T2DM and DSP have on nerve mechanosensitivity in the lower extremity.</p> <p>Methods</p> <p>This cross-sectional study included 43 people with T2DM. Straight leg raise neurodynamic tests were performed with ankle plantar flexion (PF/SLR) and dorsiflexion (DF/SLR). Hip flexion range of motion (ROM), lower extremity muscle activity and symptom profile, intensity and location were measured at rest, first onset of symptoms (P1) and maximally tolerated symptoms (P2).</p> <p>Results</p> <p>The addition of ankle dorsiflexion during SLR testing reduced the hip flexion ROM by 4.3° ± 6.5° at P1 and by 5.4° ± 4.9° at P2. Individuals in the T2DM group with signs of severe DSP (n = 9) had no difference in hip flexion ROM between PF/SLR and DF/SLR at P1 (1.4° ± 4.2°; paired t-test p = 0.34) or P2 (0.9° ± 2.5°; paired t-test p = 0.31). Movement induced muscle activity was absent during SLR with the exception of the tibialis anterior during DF/SLR testing. Increases in symptom intensity during SLR testing were similar for both PF/SLR and DF/SLR. The addition of ankle dorsiflexion induced more frequent posterior leg symptoms when taken to P2.</p> <p>Conclusions</p> <p>Consistent with previous recommendations in the literature, P1 is an appropriate test end point for SLR neurodynamic testing in people with T2DM. However, our findings suggest that people with T2DM and severe DSP have limited responses to SLR neurodynamic testing, and thus may be at risk for harm from nerve overstretch and the information gathered will be of limited clinical value.</p
Estimating alcohol-related premature mortality in san francisco: use of population-attributable fractions from the global burden of disease study
<p>Abstract</p> <p>Background</p> <p>In recent years, national and global mortality data have been characterized in terms of well-established risk factors. In this regard, alcohol consumption has been called the third leading "actual cause of death" (modifiable behavioral risk factor) in the United States, after tobacco use and the combination of poor diet and physical inactivity. Globally and in various regions of the world, alcohol use has been established as a leading contributor to the overall burden of disease and as a major determinant of health disparities, but, to our knowledge, no one has characterized alcohol-related harm in such broad terms at the local level. We asked how alcohol-related premature mortality in San Francisco, measured in years of life lost (YLLs), compares with other well-known causes of premature mortality, such as ischemic heart disease or HIV/AIDS.</p> <p>Methods</p> <p>We applied sex- and cause-specific population-attributable fractions (PAFs) of years of life lost (YLLs) from the Global Burden of Disease Study to 17 comparable outcomes among San Francisco males and females during 2004-2007. We did this in three ways: Method 1 assumed that all San Franciscans drink like populations in developed economies. These estimates were limited to alcohol-related harm. Method 2 modified these estimates by including several beneficial effects. Method 3 assumed that Latino and Asian San Franciscans drink alcohol like populations in the global regions related to their ethnicity.</p> <p>Results</p> <p>By any of these three methods, alcohol-related premature mortality accounts for roughly a tenth of all YLLs among males. Alcohol-related YLLs among males are comparable to YLLs for leading causes such as ischemic heart disease and HIV/AIDS, in some instances exceeding them. Latino and black males bear a disproportionate burden of harm. Among females, for whom estimates differed more by method and were smaller than those for males, alcohol-related YLLs are comparable to leading causes which rank somewhere between fifth and fourteenth.</p> <p>Conclusions</p> <p>Alcohol consumption is a major contributor to premature mortality in San Francisco, especially among males. Interventions to avert alcohol-related harm in San Francisco should be taken at the population level and deserve the same attention that is given to other major risk factors, such as smoking or obesity.</p
Evaluation of clinical trial of atopic dermatitis by a topical cream containing the extracts from photosynthetic bacteria, Rhodobacter sphaeroides
A Deficiency of Ceramide Biosynthesis Causes Cerebellar Purkinje Cell Neurodegeneration and Lipofuscin Accumulation
Sphingolipids, lipids with a common sphingoid base (also termed long chain base) backbone, play essential cellular structural and signaling functions. Alterations of sphingolipid levels have been implicated in many diseases, including neurodegenerative disorders. However, it remains largely unclear whether sphingolipid changes in these diseases are pathological events or homeostatic responses. Furthermore, how changes in sphingolipid homeostasis shape the progression of aging and neurodegeneration remains to be clarified. We identified two mouse strains, flincher (fln) and toppler (to), with spontaneous recessive mutations that cause cerebellar ataxia and Purkinje cell degeneration. Positional cloning demonstrated that these mutations reside in the Lass1 gene. Lass1 encodes (dihydro)ceramide synthase 1 (CerS1), which is highly expressed in neurons. Both fln and to mutations caused complete loss of CerS1 catalytic activity, which resulted in a reduction in sphingolipid biosynthesis in the brain and dramatic changes in steady-state levels of sphingolipids and sphingoid bases. In addition to Purkinje cell death, deficiency of CerS1 function also induced accumulation of lipofuscin with ubiquitylated proteins in many brain regions. Our results demonstrate clearly that ceramide biosynthesis deficiency can cause neurodegeneration and suggest a novel mechanism of lipofuscin formation, a common phenomenon that occurs during normal aging and in some neurodegenerative diseases
Order in Spontaneous Behavior
Brains are usually described as input/output systems: they transform sensory input into motor output. However, the motor output of brains (behavior) is notoriously variable, even under identical sensory conditions. The question of whether this behavioral variability merely reflects residual deviations due to extrinsic random noise in such otherwise deterministic systems or an intrinsic, adaptive indeterminacy trait is central for the basic understanding of brain function. Instead of random noise, we find a fractal order (resembling Lévy flights) in the temporal structure of spontaneous flight maneuvers in tethered Drosophila fruit flies. Lévy-like probabilistic behavior patterns are evolutionarily conserved, suggesting a general neural mechanism underlying spontaneous behavior. Drosophila can produce these patterns endogenously, without any external cues. The fly's behavior is controlled by brain circuits which operate as a nonlinear system with unstable dynamics far from equilibrium. These findings suggest that both general models of brain function and autonomous agents ought to include biologically relevant nonlinear, endogenous behavior-initiating mechanisms if they strive to realistically simulate biological brains or out-compete other agents
Methodologies used to estimate tobacco-attributable mortality: a review
<p>Abstract</p> <p>Background</p> <p>One of the most important measures for ascertaining the impact of tobacco on a population is the estimation of the mortality attributable to its use. To measure this, a number of indirect methods of quantification are available, yet there is no consensus as to which furnishes the best information. This study sought to provide a critical overview of the different methods of attribution of mortality due to tobacco consumption.</p> <p>Method</p> <p>A search was made in the Medline database until March 2005 in order to obtain papers that addressed the methodology employed for attributing mortality to tobacco use.</p> <p>Results</p> <p>Of the total of 7 methods obtained, the most widely used were the prevalence methods, followed by the approach proposed by Peto et al, with the remainder being used in a minority of studies.</p> <p>Conclusion</p> <p>Different methodologies are used to estimate tobacco attributable mortality, but their methodological foundations are quite similar in all. Mainly, they are based on the calculation of proportional attributable fractions. All methods show limitations of one type or another, sometimes common to all methods and sometimes specific.</p
- …
