14 research outputs found
Recombination Drives Vertebrate Genome Contraction
Selective and/or neutral processes may govern variation in DNA content and, ultimately, genome size. The observation in several organisms of a negative correlation between recombination rate and intron size could be compatible with a neutral model in which recombination is mutagenic for length changes. We used whole-genome data on small insertions and deletions within transposable elements from chicken and zebra finch to demonstrate clear links between recombination rate and a number of attributes of reduced DNA content. Recombination rate was negatively correlated with the length of introns, transposable elements, and intergenic spacer and with the rate of short insertions. Importantly, it was positively correlated with gene density, the rate of short deletions, the deletion bias, and the net change in sequence length. All these observations point at a pattern of more condensed genome structure in regions of high recombination. Based on the observed rates of small insertions and deletions and assuming that these rates are representative for the whole genome, we estimate that the genome of the most recent common ancestor of birds and lizards has lost nearly 20% of its DNA content up until the present. Expansion of transposable elements can counteract the effect of deletions in an equilibrium mutation model; however, since the activity of transposable elements has been low in the avian lineage, the deletion bias is likely to have had a significant effect on genome size evolution in dinosaurs and birds, contributing to the maintenance of a small genome. We also demonstrate that most of the observed correlations between recombination rate and genome contraction parameters are seen in the human genome, including for segregating indel polymorphisms. Our data are compatible with a neutral model in which recombination drives vertebrate genome size evolution and gives no direct support for a role of natural selection in this process
Causes and consequences of crossing-over evidenced via a high-resolution recombinational landscape of the honey bee
Population genomics of speciation and admixture
The application of population genomics to the understanding of speciation has led to the emerging field of speciation genomics. This has brought new insight into how divergence builds up within the genome during speciation and is also revealing the extent to which species can continue to exchange genetic material despite reproductive barriers. It is also providing powerful new approaches for linking genotype to phenotype in admixed populations. In this chapter, we give an overview of some of the methods that have been used and some of the novel insights gained. We also outline some of the pitfalls of the most commonly used methods and possible problems with interpretation of the results
Inferring Genome-Wide Recombination Landscapes from Advanced Intercross Lines: Application to Yeast Crosses
Detection of genomic loci associated with chromosomal recombination using high-density linkage mapping in Setaria
Dissecting meiotic recombination based on tetrad analysis by single-microspore sequencing in maize
A high-density genetic map reveals variation in recombination rate across the genome of Daphnia magna
Single gametophyte sequencing reveals that crossover events differ between sexes in maize
No Evidence that Infection Alters Global Recombination Rate in House Mice
Recombination rate is a complex trait, with genetic and environmental factors shaping observed patterns of variation. Although recent studies have begun to unravel the genetic basis of recombination rate differences between organisms, less attention has focused on the environmental determinants of crossover rates. Here, we test the effect of one ubiquitous environmental pressure-bacterial infection-on global recombination frequency in mammals. We applied MLH1 mapping to assay global crossover rates in male mice infected with the pathogenic bacterium Borrelia burgdorferi, the causative agent of Lyme Disease, and uninfected control animals. Despite ample statistical power to identify biologically relevant differences between infected and uninfected animals, we find no evidence for a global recombination rate response to bacterial infection. Moreover, broad-scale patterns of crossover distribution, including the number of achiasmate bivalents, are not affected by infection status. Although pathogen exposure can plastically increase recombination in some species, our findings suggest that recombination rates in house mice may be resilient to at least some forms of infection stress. This negative result motivates future experiments with alternative house mouse pathogens to evaluate the generality of this conclusion
