34 research outputs found

    Time to go global: a consultation on global health competencies for postgraduate doctors

    Get PDF
    BACKGROUND: Globalisation is having profound impacts on health and healthcare. We solicited the views of a wide range of stakeholders in order to develop core global health competencies for postgraduate doctors. METHODS: Published literature and existing curricula informed writing of seven global health competencies for consultation. A modified policy Delphi involved an online survey and face-to-face and telephone interviews over three rounds. RESULTS: Over 250 stakeholders participated, including doctors, other health professionals, policymakers and members of the public from all continents of the world. Participants indicated that global health competence is essential for postgraduate doctors and other health professionals. Concerns were expressed about overburdening curricula and identifying what is 'essential' for whom. Conflicting perspectives emerged about the importance and relevance of different global health topics. Five core competencies were developed: (1) diversity, human rights and ethics; (2) environmental, social and economic determinants of health; (3) global epidemiology; (4) global health governance; and (5) health systems and health professionals. CONCLUSIONS: Global health can bring important perspectives to postgraduate curricula, enhancing the ability of doctors to provide quality care. These global health competencies require tailoring to meet different trainees' needs and facilitate their incorporation into curricula. Healthcare and global health are ever-changing; therefore, the competencies will need to be regularly reviewed and updated

    Intra-oral compartment pressures: a biofunctional model and experimental measurements under different conditions of posture

    Get PDF
    Oral posture is considered to have a major influence on the development and reoccurrence of malocclusion. A biofunctional model was tested with the null hypotheses that (1) there are no significant differences between pressures during different oral functions and (2) between pressure measurements in different oral compartments in order to substantiate various postural conditions at rest by intra-oral pressure dynamics. Atmospheric pressure monitoring was simultaneously carried out with a digital manometer in the vestibular inter-occlusal space (IOS) and at the palatal vault (sub-palatal space, SPS). Twenty subjects with normal occlusion were evaluated during the open-mouth condition (OC), gently closed lips (semi-open compartment condition, SC), with closed compartments after the generation of a negative pressure (CCN) and swallowing (SW). Pressure curve characteristics were compared between the different measurement phases (OC, SC, CCN, SW) as well as between the two compartments (IOS, SPS) using analysis of variance and Wilcoxon matched-pairs tests adopting a significance level of α = 0.05. Both null hypotheses were rejected. Average pressures (IOS, SPS) in the experimental phases were 0.0, −0.08 (OC); −0.16, −1.0 (SC); −48.79, −81.86 (CCN); and −29.25, −62.51 (SW) mbar. CCN plateau and peak characteristics significantly differed between the two compartments SPS and IOS. These results indicate the formation of two different intra-oral functional anatomical compartments which provide a deeper understanding of orofacial biofunctions and explain previous observations of negative intra-oral pressures at rest

    Proteogenomic Characterization of Monocyclic Aromatic Hydrocarbon Degradation Pathways in the Aniline-Degrading Bacterium Burkholderia sp. K24

    No full text
    Burkholderia sp. K24, formerly known as Acinetobacter lwoffii K24, is a soil bacterium capable of utilizing aniline as its sole carbon and nitrogen source. Genomic sequence analysis revealed that this bacterium possesses putative gene clusters for biodegradation of various monocyclic aromatic hydrocarbons (MAHs), including benzene, toluene, and xylene (BTX), as well as aniline. We verified the proposed MAH biodegradation pathways by dioxygenase activity assays, RT-PCR, and LC/MS-based quantitative proteomic analyses. This proteogenomic approach revealed four independent degradation pathways, all converging into the citric acid cycle. Aniline and p-hydroxybenzoate degradation pathways converged into the β-ketoadipate pathway. Benzoate and toluene were degraded through the benzoyl-CoA degradation pathway. The xylene isomers, i.e., o-, m-, and p-xylene, were degraded via the extradiol cleavage pathways. Salicylate was degraded through the gentisate degradation pathway. Our results show that Burkholderia sp. K24 possesses versatile biodegradation pathways, which may be employed for efficient bioremediation of aniline and BTX
    corecore