891 research outputs found

    Quantum hypothesis testing with group symmetry

    Full text link
    The asymptotic discrimination problem of two quantum states is studied in the setting where measurements are required to be invariant under some symmetry group of the system. We consider various asymptotic error exponents in connection with the problems of the Chernoff bound, the Hoeffding bound and Stein's lemma, and derive bounds on these quantities in terms of their corresponding statistical distance measures. A special emphasis is put on the comparison of the performances of group-invariant and unrestricted measurements.Comment: 33 page

    Direct Exposure of Consumers to Personal Care Products

    Get PDF

    Two-parameter deformations of logarithm, exponential, and entropy: A consistent framework for generalized statistical mechanics

    Full text link
    A consistent generalization of statistical mechanics is obtained by applying the maximum entropy principle to a trace-form entropy and by requiring that physically motivated mathematical properties are preserved. The emerging differential-functional equation yields a two-parameter class of generalized logarithms, from which entropies and power-law distributions follow: these distributions could be relevant in many anomalous systems. Within the specified range of parameters, these entropies possess positivity, continuity, symmetry, expansibility, decisivity, maximality, concavity, and are Lesche stable. The Boltzmann-Shannon entropy and some one parameter generalized entropies already known belong to this class. These entropies and their distribution functions are compared, and the corresponding deformed algebras are discussed.Comment: Version to appear in PRE: about 20% shorter, references updated, 13 PRE pages, 3 figure

    Parameter estimation in pair hidden Markov models

    Full text link
    This paper deals with parameter estimation in pair hidden Markov models (pair-HMMs). We first provide a rigorous formalism for these models and discuss possible definitions of likelihoods. The model being biologically motivated, some restrictions with respect to the full parameter space naturally occur. Existence of two different Information divergence rates is established and divergence property (namely positivity at values different from the true one) is shown under additional assumptions. This yields consistency for the parameter in parametrization schemes for which the divergence property holds. Simulations illustrate different cases which are not covered by our results.Comment: corrected typo

    Security of Quantum Key Distribution with entangled quNits

    Full text link
    We consider a generalisation of Ekert's entanglement-based quantum cryptographic protocol where qubits are replaced by quNNits (i.e., N-dimensional systems). In order to study its robustness against optimal incoherent attacks, we derive the information gained by a potential eavesdropper during a cloning-based individual attack. In doing so, we generalize Cerf's formalism for cloning machines and establish the form of the most general cloning machine that respects all the symmetries of the problem. We obtain an upper bound on the error rate that guarantees the confidentiality of quNit generalisations of the Ekert's protocol for qubits.Comment: 15 pages, equation 15 and conclusions corrected the 14th of April 2003, new results adde

    Strong Convergence towards homogeneous cooling states for dissipative Maxwell models

    Get PDF
    We show the propagation of regularity, uniformly in time, for the scaled solutions of the inelastic Maxwell model for small inelasticity. This result together with the weak convergence towards the homogenous cooling state present in the literature implies the strong convergence in Sobolev norms and in the L1L^1 norm towards it depending on the regularity of the initial data. The strategy of the proof is based on a precise control of the growth of the Fisher information for the inelastic Boltzmann equation. Moreover, as an application we obtain a bound in the L1L^1 distance between the homogeneous cooling state and the corresponding Maxwellian distribution vanishing as the inelasticity goes to zero.Comment: 2 figure
    corecore