199 research outputs found

    Impacts of marine instability across the East Antarctic Ice Sheet on Southern Ocean dynamics

    Get PDF
    Recent observations and modelling studies have demonstrated the potential for rapid and substantial retreat of large sectors of the East Antarctic Ice Sheet (EAIS). This has major implications for ocean circulation and global sea level. Here we examine the effects of increasing meltwater from the Wilkes Basin, one of the major marine-based sectors of the EAIS, on Southern Ocean dynamics. Climate model simulations reveal that the meltwater flux rapidly stratifies surface waters, leading to a dramatic decrease in the rate of Antarctic Bottom Water (AABW) formation. The surface ocean cools but, critically, the Southern Ocean warms by more than 1 degrees C at depth. This warming is accompanied by a Southern Ocean-wide “domino effect”, whereby the warming signal propagates westward with depth. Our results suggest that melting of one sector of the EAIS could result in accelerated warming across other sectors, including the Weddell Sea sector of the West Antarctic Ice Sheet. Thus, localised melting of the EAIS could potentially destabilise the wider Antarctic Ice Sheet

    Was there a '4.2ka event' in Great Britain and Ireland? Evidence from the peatland record

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Palaeoenvironmental and archaeological data from several regions around the world show evidence of a multi-centennial climatic event occurring approximately 4200cal yr BP (4.2ka). Whilst the climatic change and/or impact of the 4.2ka event is clear in certain regions, such as western Asia, evidence for the event has yet to be fully evaluated in northwest Europe. This study presents high-resolution, multi-proxy palaeoclimate records from sites in Northern Ireland, ideally located for an objective examination of the nature of the event in Great Britain and Ireland within the broader context of mid-Holocene climate change c. 6.5-2.5ka. The peatlands of northwest Europe possess considerable potential for the examination of climatic change in the North Atlantic region, demonstrated by the range of palaeohydrological proxy data generated during this study (peat humification, plant macrofossil and testate amoebae analyses) supported by a high-resolution chronology (including comprehensive AMS 14 C and tephrochronology). The inter-site testate amoebae reconstructions appear coherent and were combined to produce a regional climatic record, in marked contrast to the plant macrofossil and peat humification records that appear climatically complacent. The testate amoebae reconstruction, however, provides no compelling evidence for a 4.2ka event signal and is consistent with previously reported studies from across northwest Europe, suggesting the origin and impact of this event is spatially complex. © 2013 Elsevier Ltd.This research was carried out while T.P.R. held a UK Natural Environment Research Council studentship (NE/G524328/1) at the University of Exeter.

    The 5.2 ka climate event: Evidence from stable isotope and multi-proxy palaeoecological peatland records in Ireland

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Evidence for a major climate event at 5.2 ka has been reported globally and is associated with considerable societal disruption, but is poorly characterised in northwest Europe. This event forms part of a broader period of re-organisation in the Earth's ocean-atmosphere circulation system between 6 and 5 ka. This study tests the nature and timing of the event in northwest Europe, a region highly sensitive to change in meridional overturning circulation and mid-latitude westerly airflow. Here we report three high-resolution Irish multi-proxy records obtained from ombrotrophic peatlands that have robust chronological frameworks. We identify the 5.2 ka event by a sustained decrease in δ 18 O cellulose at all three sites, with additional and parallel changes in δ 13 C cellulose and palaeoecological (testate amoebae, plant macrofossil and humification) data from two sites in northern Ireland. Data from Sluggan Moss demonstrate a particularly coherent shift towards wetter conditions. These data support the hypothesis that the event was caused by a prolonged period of positive North Atlantic Oscillation conditions, resulting in pervasive cyclonic weather patterns across northwest Europe, increasing precipitation over Ireland.This research was carried out while T.P.R. held UK Natural Environment Research Council studentship at the University of Exeter (NE/G524328/1) and T.J.D held a studentship at the University of Southampton tied to the NERC RAPID Programme (NER/T/S/2002/00460). Radiocarbon support was provided by the NERC 14C Steering Committee (Allocation No.: 1523.0910), the NERC RAPID Programme and the Irish Quaternary Association via the IQUA Bill Watts 14Chrono award

    Delayed maximum northern European summer temperatures during the Last Interglacial as a result of Greenland Ice Sheet melt

    Get PDF
    This is the author accepted manuscript. The final version is available from the Geological Society of America via the DOI in this record.Here we report a new quantitative mean July temperature reconstruction using non-biting midges (chironomids) from the Danish Last Interglacial (LIG) site Hollerup (spanning 127–116 ka). We find that peak mean July temperatures of 17.5 °C, similar to those of the present day (1961–1990 CE), were reached shortly before the onset of the regional Carpinus pollen zone. Through comparison to terrestrial and marine sequences we demonstrate that peak summer warmth took place some three millennia after the onset of LIG warming in Europe, a marked delay in line with records from the North Atlantic. Crucially, the warmest northern European summer temperatures appear to follow maximum Greenland Ice Sheet mass loss, implying that meltwater substantially reduced Atlantic Meridional Overturning Circulation and depressed European temperatures during the early part of the interglacial.Turney and Fogwill thank the Australian Research Council (grants FL100100195, FT120100004, LP120200724). Thanks to Bjørn Buchardt for providing the C:N data, Angela Self for help with statistical analysis, David Campbell and Alan Bedford for laboratory work, and three reviewers for their constructive comments

    Early warnings and missed alarms for abrupt monsoon transitions

    Get PDF
    Journal ArticlePalaeo-records from China demonstrate that the East Asian Summer Monsoon (EASM) is dominated by abrupt and large magnitude monsoon shifts on millennial timescales, switching between periods of high and weak monsoon rains. It has been hypothesized that over these timescales, the EASM exhibits two stable states with bifurcation-Type tipping points between them. Here we test this hypothesis by looking for early warning signals of past bifurcations in speleothem δ18O records from Sanbao Cave and Hulu Cave, China, spanning the penultimate glacial cycle. We find that although there are increases in both autocorrelation and variance preceding some of the monsoon transitions during this period, it is only immediately prior to the abrupt monsoon shift at the penultimate deglaciation (Termination II) that statistically significant increases are detected. To supplement our data analysis, we produce and analyse multiple model simulations that we derive from these data. We find hysteresis behaviour in our model simulations with transitions directly forced by solar insolation. However, signals of critical slowing down, which occur on the approach to a bifurcation, are only detectable in the model simulations when the change in system stability is sufficiently slow to be detected by the sampling resolution of the data set. This raises the possibility that the early warning "alarms" were missed in the speleothem data over the period 224-150 kyr and it was only at the monsoon termination that the change in the system stability was sufficiently slow to detect early warning signals

    Brief communication: Impacts of a developing polynya off Commonwealth Bay, East Antarctica, triggered by grounding of iceberg B09B

    Get PDF
    The dramatic calving of the Mertz Glacier tongue in 2010, precipitated by the movement of iceberg B09B, reshaped the oceanographic regime across the Mertz Polynya and Commonwealth Bay, regions where high-salinity shelf water (HSSW) - the precursor to Antarctic bottom water (AABW) - is formed. Here we present post-calving observations that suggest that this reconfiguration and subsequent grounding of B09B have driven the development of a new polynya and associated HSSW production off Commonwealth Bay. Supported by satellite observations and modelling, our findings demonstrate how local icescape changes may impact the formation of HSSW, with potential implications for large-scale ocean circulation

    Decadal-scale onset and termination of Antarctic ice-mass loss during the last deglaciation.

    Full text link
    Emerging ice-sheet modeling suggests once initiated, retreat of the Antarctic Ice Sheet (AIS) can continue for centuries. Unfortunately, the short observational record cannot resolve the tipping points, rate of change, and timescale of responses. Iceberg-rafted debris data from Iceberg Alley identify eight retreat phases after the Last Glacial Maximum that each destabilized the AIS within a decade, contributing to global sea-level rise for centuries to a millennium, which subsequently re-stabilized equally rapidly. This dynamic response of the AIS is supported by (i) a West Antarctic blue ice record of ice-elevation drawdown >600 m during three such retreat events related to globally recognized deglacial meltwater pulses, (ii) step-wise retreat up to 400 km across the Ross Sea shelf, (iii) independent ice sheet modeling, and (iv) tipping point analysis. Our findings are consistent with a growing body of evidence suggesting the recent acceleration of AIS mass loss may mark the beginning of a prolonged period of ice sheet retreat and substantial global sea level rise

    Greenland ice mass loss during the Younger Dryas driven by Atlantic Meridional Overturning Circulation feedbacks.

    Full text link
    Understanding feedbacks between the Greenland Ice Sheet (GrIS) and the Atlantic Meridional Overturning Circulation (AMOC) is crucial for reducing uncertainties over future sea level and ocean circulation change. Reconstructing past GrIS dynamics can extend the observational record and elucidate mechanisms that operate on multi-decadal timescales. We report a highly-constrained last glacial vertical profile of cosmogenic isotope exposure ages from Sermilik Fjord, a marine-terminating ice stream in the southeast sector of the GrIS. Our reconstruction reveals substantial ice-mass loss throughout the Younger Dryas (12.9-11.7 ka), a period of marked atmospheric and sea-surface cooling. Earth-system modelling reveals that southern GrIS marginal melt was likely driven by strengthening of the Irminger Current at depth due to a weakening of the AMOC during the Younger Dryas. This change in North Atlantic circulation appears to have drawn warm subsurface waters to southeast Greenland despite markedly cooler sea surface temperatures, enhancing thermal erosion at the grounding lines of palaeo ice-streams, supporting interpretation of regional marine-sediment cores. Given current rates of GrIS meltwater input into the North Atlantic and the vulnerability of major ice streams to water temperature changes at the grounding line, this mechanism has important implications for future AMOC changes and northern hemisphere heat transport

    Technical note: Optimizing the utility of combined GPR, OSL, and Lidar (GOaL) to extract paleoenvironmental records and decipher shoreline evolution

    Get PDF
    Records of past sea levels, storms, and their impacts on coastlines are crucial for forecasting and managing future changes resulting from anthropogenic global warming. Coastal barriers that have prograded over the Holocene preserve within their accreting sands a history of storm erosion and changes in sea level. High-resolution geophysics, geochronology, and remote sensing techniques offer an optimal way to extract these records and decipher shoreline evolution. These methods include light detection and ranging (lidar) to image the lateral extent of relict shoreline dune morphology in 3-D, ground-penetrating radar (GPR) to record paleo-dune, beach, and nearshore stratigraphy, and optically stimulated luminescence (OSL) to date the deposition of sand grains along these shorelines. Utilization of these technological advances has recently become more prevalent in coastal research. The resolution and sensitivity of these methods offer unique insights on coastal environments and their relationship to past climate change. However, discrepancies in the analysis and presentation of the data can result in erroneous interpretations. When utilized correctly on prograded barriers these methods (independently or in various combinations) have produced storm records, constructed sea-level curves, quantified sediment budgets, and deciphered coastal evolution. Therefore, combining the application of GPR, OSL, and Lidar (GOaL) on one prograded barrier has the potential to generate three detailed records of (1) storms, (2) sea level, and (3) sediment supply for that coastline. Obtaining all three for one barrier (a GOaL hat-trick) can provide valuable insights into how these factors influenced past and future barrier evolution. Here we argue that systematically achieving GOaL hat-tricks on some of the 300+ prograded barriers worldwide would allow us to disentangle local patterns of sediment supply from the regional effects of storms or global changes in sea level, providing for a direct comparison to climate proxy records. Fully realizing this aim requires standardization of methods to optimize results. The impetus for this initiative is to establish a framework for consistent data collection and analysis that maximizes the potential of GOaL to contribute to climate change research that can assist coastal communities in mitigating future impacts of global warming

    Traces of volcanic ash from the Mediterranean, Iceland and North America in a Holocene record from South Wales, UK

    Get PDF
    A tephra record is presented for a sediment core from Llyn Llech Owain, south Wales, spanning the early‐ to mid‐Holocene. Seven cryptotephra deposits are discovered with three thought to correlate with known eruptions and the remaining four considered to represent previously undocumented events. One deposit is suggested to correlate with the ~6.9 cal ka bp Lairg A tephra from Iceland, whereas more distant sources are proposed as the origin for two of the tephra deposits. A peak of colourless shards in early‐Holocene sediments is thought to tentatively correlate with the ~9.6 cal ka bp Fondi di Baia tephra (Campi Flegrei) and a second cryptotephra is tentatively correlated with the ~3.6 cal ka bp Aniakchak (CFE) II tephra (Alaska). The Fondi di Baia tephra has never been recorded beyond proximal sites and its discovery in south Wales significantly extends the geographical distribution of ash from this eruption. The remaining four cryptotephra deposits are yet to be correlated with known eruptions, demonstrating that our current understanding of widespread tephra deposits is incomplete. This new tephra record highlights the potential for sites at more southerly and westerly locations in northwest Europe to act as repositories for ash from several volcanic regions
    corecore