79 research outputs found
Insight into aquaculture's potential of marine annelid worms and ecological concerns: a review
Polychaetes are marine annelid worms that can contribute to aquaculture diversification. Its culture has been viable, and commercially attempted, but intensive
production has progressed only in few countries around the world. In the countries with no production, marine polychaetes are imported or harvested. A strong
and sustained research investment provided to a better understanding of the
nutritional requirements and reproduction of some species. Recent studies
showed new technical improvements, which can lead to an important progress in
productivity and give a new impetus to the polychaete production. Some marine
worm species were identified as good candidates for integrated multitrophic
aquaculture. The development of cost-effective aquaculture techniques for marine
annelid worms is essential to ensure a balance between commercial interests and
the preservation of ecosystems. The influence of polychaete aquaculture on the
environment and vice versa raise important concerns related to ecological security
and sustainability of this activity. This review focus on the main technical
improvements and advances that have been made in areas as diverse as: aquaculture potential of polychaetes, reared species, main species used worldwide, and
highlights biological and ecological concerns, important challenges and recommendations.This study was supported by the
FCT (Portuguese National Board of Scientific Research),
through the MARE (Marine and Environmental Sciences
Centre) (UID/MAR/04292/2013) strategic programme and
through strategic project PEst-OE/MAR/UI0199/2014,
granted to MARE. This study has also the financial support
of PROMAR Program through the project 31-03-05-FEP42: LIVE BAIT – Annelid polychaetes as live bait in Portugal: harvesting, import and rearing management.info:eu-repo/semantics/publishedVersio
The use of the Airtraq® optical laryngoscope for routine tracheal intubation in high-risk cardio-surgical patients
<p>Abstract</p> <p>Background</p> <p>The Airtraq<sup>® </sup>optical laryngoscope (Prodol Ltd., Vizcaya, Spain) is a novel disposable device facilitating tracheal intubation in routine and difficult airway patients. No data investigating routine tracheal intubation using the Airtaq<sup>® </sup>in patients at a high cardiac risk are available at present. Purpose of this study was to investigate the feasibility and hemodynamic implications of tracheal intubation with the Aitraq<sup>® </sup>optical laryngoscope, in high-risk cardio-surgical patients.</p> <p>Methods</p> <p>123 consecutive ASA III patients undergoing elective coronary artery bypass grafting were routinely intubated with the Airtraq<sup>® </sup>laryngoscope. Induction of anesthesia was standardized according to our institutional protocol. All tracheal intubations were performed by six anesthetists trained in the use of the Airtraq<sup>® </sup>prior.</p> <p>Results</p> <p>Overall success rate was 100% (n = 123). All but five patients trachea could be intubated in the first attempt (95,9%). 5 patients were intubated in a 2nd (n = 4) or 3rd (n = 1) attempt. Mean intubation time was 24.3 s (range 16-128 s). Heart rate, arterial blood pressure and SpO<sub>2 </sub>were not significantly altered. Minor complications were observed in 6 patients (4,8%), i.e. two lesions of the lips and four minor superficial mucosal bleedings. Intubation duration (p = 0.62) and number of attempts (p = 0.26) were independent from BMI and Mallampati score.</p> <p>Conclusion</p> <p>Tracheal intubation with the Airtraq<sup>® </sup>optical laryngoscope was feasible, save and easy to perform in high-risk patients undergoing cardiac surgery. In all patients, a sufficient view on the vocal cords could be obtained, independent from BMI and preoperative Mallampati score.</p> <p>Trial Registration</p> <p>DRKS 00003230</p
Response of human dental pulp cells to a silver-containing PLGA/TCP-nanofabric as a potential antibacterial regenerative pulp-capping material
A Combined Epigenetic and Non-Genetic Approach for Reprogramming Human Somatic Cells
Reprogramming of somatic cells to different extents has been reported using different methods. However, this is normally accompanied by the use of exogenous materials, and the overall reprogramming efficiency has been low. Chemicals and small molecules have been used to improve the reprogramming process during somatic cell nuclear transfer (SCNT) and induced pluripotent stem (iPS) cell generation. We report here the first application of a combined epigenetic and non-genetic approach for reprogramming somatic cells, i.e., DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors, and human embryonic stem cell (hESC) extracts. When somatic cells were pretreated with these inhibitors before exposure to hESC (MEL1) extracts, morphological analysis revealed a higher rate of hESC-like colony formation than without pretreatment. Quantitative PCR (qPCR) demonstrated that pluripotency genes were upregulated when compared to those of somatic cells or treated with hESC extracts alone. Overall changes in methylation and acetylation levels of pretreated somatic cells suggests that epigenetic states of the cells have an effect on reprogramming efficiency induced by hESC extracts. KnockOutserum replacement (KOSR™) medium (KO-SR) played a positive role in inducing expression of the pluripotency genes. hESC extracts could be an alternative approach to reprogram somatic cells without introducing exogenous materials. The epigenetic pre-treatment of somatic cells could be used to improve the efficiency of reprogramming process. Under differentiation conditions, the reprogrammed cells exhibited differentiation ability into neurons suggesting that, although fully reprogramming was not achieved, the cells could be transdifferentiated after reprogramming
Tension-Compression Loading with Chemical Stimulation Results in Additive Increases to Functional Properties of Anatomic Meniscal Constructs
Objective: This study aimed to improve the functional properties of anatomically-shaped meniscus constructs through simultaneous tension and compression mechanical stimulation in conjunction with chemical stimulation. Methods: Scaffoldless meniscal constructs were subjected to simultaneous tension and compressive stimulation and chemical stimulation. The temporal aspect of mechanical loadingwas studied by employing two separate five day stimulation periods. Chemical stimulation consisted of the application of a catabolic GAG-depleting enzyme, chondroitinase ABC (C-ABC), and an anabolic growth factor, TGF-b1. Mechanical and chemical stimulation combinations were studied through a full-factorial experimental design and assessed for histological, biochemical, and biomechanical properties following 4 wks of culture. Results: Mechanical loading applied from days 10–14 resulted in significant increases in compressive, tensile, and biochemical properties of meniscal constructs. When mechanical and chemical stimuliwere combined significant additive increases in collagen per wet weight (4-fold), compressive instantaneous (3-fold) and relaxation (2-fold) moduli, and tensile moduli in the circumferential (4-fold) and radial (6-fold) directions were obtained. Conclusions: This study demonstrates that a stimulation regimen of simultaneous tension and compression mechanical stimulation, C-ABC, and TGF-b1 is able to create anatomic meniscus constructs replicating the compressive mechanica
Year in review in Intensive Care Medicine 2009: I. Pneumonia and infections, sepsis, outcome, acute renal failure and acid base, nutrition and glycaemic control
Journal ArticleReviewSCOPUS: re.jinfo:eu-repo/semantics/publishe
Surface and Temporal Biosignatures
Recent discoveries of potentially habitable exoplanets have ignited the
prospect of spectroscopic investigations of exoplanet surfaces and atmospheres
for signs of life. This chapter provides an overview of potential surface and
temporal exoplanet biosignatures, reviewing Earth analogues and proposed
applications based on observations and models. The vegetation red-edge (VRE)
remains the most well-studied surface biosignature. Extensions of the VRE,
spectral "edges" produced in part by photosynthetic or nonphotosynthetic
pigments, may likewise present potential evidence of life. Polarization
signatures have the capacity to discriminate between biotic and abiotic "edge"
features in the face of false positives from band-gap generating material.
Temporal biosignatures -- modulations in measurable quantities such as gas
abundances (e.g., CO2), surface features, or emission of light (e.g.,
fluorescence, bioluminescence) that can be directly linked to the actions of a
biosphere -- are in general less well studied than surface or gaseous
biosignatures. However, remote observations of Earth's biosphere nonetheless
provide proofs of concept for these techniques and are reviewed here. Surface
and temporal biosignatures provide complementary information to gaseous
biosignatures, and while likely more challenging to observe, would contribute
information inaccessible from study of the time-averaged atmospheric
composition alone
A mathematical model of tissue-engineered cartilage development under cyclic compressive loading
In this work a coupled model of solute transport and uptake, cell proliferation, extracellular matrix synthesis and remodeling of mechanical properties accounting for the impact of mechanical loading is presented as an advancement of a previously validated coupled model for free-swelling tissue-engineered cartilage cultures. Tissue-engineering con- structs were modeled as biphasic with a linear elastic solid, and relevant intrinsic mechanical stimuli in the constructs were determined by numerical simulation for use as inputs of the coupled model. The mechanical dependent formulations were derived from a calibration and parametrization dataset and validated by comparison of normalized ratios of cell counts, total glycosaminoglycans and collagen after 24h continuous cyclic unconfined compression from another dataset. The model successfully fit the calibration dataset and predicted the results from the validation dataset with good agreement, with average relative errors up to 3.1 and 4.3%, respectively. Temporal and spatial patterns determined for other model outputs were consistent with reported studies. The results suggest that the model describes the interaction between the simultaneous factors involved in in vitro tissue-engineered cartilage culture under dynamic loading. This approach could also be attractive for optimization of culture protocols, namely through the application to longer culture times and other types of mechanical stimul
- …
