21 research outputs found
Excess body weight and age associated with the carriage of fluoroquinolone and third-generation cephalosporin resistance genes in commensal Escherichia coli from a cohort of urban Vietnamese children
Purpose. Antimicrobial-resistant bacterial infections in low- and middle-income countries (LMICs) are a well-established global health issue. We aimed to assess the prevalence of and epidemiological factors associated with the carriage of ciprofloxacin- and ceftriaxone-resistant Escherichia coli and associated resistance genes in a cohort of 498 healthy children residing in urban Vietnam. Methodology. We cultured rectal swabs onto MacConkey agar supplemented with resistant concentrations of ciprofloxacin and ceftriaxone. Additionally, we screened meta-E. coli populations by conventional PCR to detect plasmid-mediated quinolone resistance (PMQR)- and extended-spectrum β-lactamase (ESBL)-encoding genes. We measured the associations between phenotypic/genotypic resistance and demographic characteristics using logistic regression. Results/key findings. Ciprofloxacin- and ceftriaxone-resistant E. coli were cultured from the faecal samples of 67.7 % (337/498) and 80.3 % (400/498) of children, respectively. The prevalence of any associated resistance marker in the individual samples was 86.7 % (432/498) for PMQR genes and 90.6 % (451/498) for β-lactamase genes. Overweight children were significantly more likely to carry qnr genes than children with lower weight-for-height z-scores [odds ratios (OR): 1.24; 95 % confidence interval (CI): 10.5–1.48 for each unit increase in weight for height; P=0.01]. Additionally, younger children were significantly more likely to carry ESBL CTX-M genes than older children (OR: 0.97, 95 % CI: 0.94–0.99 for each additional year, P=0.01). Conclusion. The carriage of genotypic and phenotypic antimicrobial resistance is highly prevalent among E. coli in healthy children in the community in Vietnam. Future investigations on the carriage of antimicrobial resistant organisms in LMICs should focus on the progression of carriage from birth and structure of the microbiome in obesity
Inflammatory Gene Regulatory Networks in Amnion Cells Following Cytokine Stimulation: Translational Systems Approach to Modeling Human Parturition
A majority of the studies examining the molecular regulation of human labor have
been conducted using single gene approaches. While the technology to produce
multi-dimensional datasets is readily available, the means for facile analysis
of such data are limited. The objective of this study was to develop a systems
approach to infer regulatory mechanisms governing global gene expression in
cytokine-challenged cells in vitro, and to apply these methods
to predict gene regulatory networks (GRNs) in intrauterine tissues during term
parturition. To this end, microarray analysis was applied to human amnion
mesenchymal cells (AMCs) stimulated with interleukin-1β, and differentially
expressed transcripts were subjected to hierarchical clustering, temporal
expression profiling, and motif enrichment analysis, from which a GRN was
constructed. These methods were then applied to fetal membrane specimens
collected in the absence or presence of spontaneous term labor. Analysis of
cytokine-responsive genes in AMCs revealed a sterile immune response signature,
with promoters enriched in response elements for several inflammation-associated
transcription factors. In comparison to the fetal membrane dataset, there were
34 genes commonly upregulated, many of which were part of an acute inflammation
gene expression signature. Binding motifs for nuclear factor-κB were
prominent in the gene interaction and regulatory networks for both datasets;
however, we found little evidence to support the utilization of
pathogen-associated molecular pattern (PAMP) signaling. The tissue specimens
were also enriched for transcripts governed by hypoxia-inducible factor. The
approach presented here provides an uncomplicated means to infer global
relationships among gene clusters involved in cellular responses to
labor-associated signals
Excess body weight and age associated with the carriage of fluoroquinolone and third-generation cephalosporin resistance genes in commensal Escherichia coli from a cohort of urban Vietnamese children
Excess body weight and age associated with the carriage of fluoroquinolone and third-generation cephalosporin resistance genes in commensal Escherichia coli from a cohort of urban Vietnamese children
Purpose. Antimicrobial-resistant bacterial infections in low- and middle-income countries (LMICs) are a well-established global health issue. We aimed to assess the prevalence of and epidemiological factors associated with the carriage of ciprofloxacin- and ceftriaxone-resistant Escherichia coli and associated resistance genes in a cohort of 498 healthy children residing in urban Vietnam. Methodology. We cultured rectal swabs onto MacConkey agar supplemented with resistant concentrations of ciprofloxacin and ceftriaxone. Additionally, we screened meta-E. coli populations by conventional PCR to detect plasmid-mediated quinolone resistance (PMQR)- and extended-spectrum β-lactamase (ESBL)-encoding genes. We measured the associations between phenotypic/genotypic resistance and demographic characteristics using logistic regression. Results/key findings. Ciprofloxacin- and ceftriaxone-resistant E. coli were cultured from the faecal samples of 67.7 % (337/498) and 80.3 % (400/498) of children, respectively. The prevalence of any associated resistance marker in the individual samples was 86.7 % (432/498) for PMQR genes and 90.6 % (451/498) for β-lactamase genes. Overweight children were significantly more likely to carry qnr genes than children with lower weight-for-height z-scores [odds ratios (OR): 1.24; 95 % confidence interval (CI): 10.5–1.48 for each unit increase in weight for height; P=0.01]. Additionally, younger children were significantly more likely to carry ESBL CTX-M genes than older children (OR: 0.97, 95 % CI: 0.94–0.99 for each additional year, P=0.01). Conclusion. The carriage of genotypic and phenotypic antimicrobial resistance is highly prevalent among E. coli in healthy children in the community in Vietnam. Future investigations on the carriage of antimicrobial resistant organisms in LMICs should focus on the progression of carriage from birth and structure of the microbiome in obesity.</p
Feasibility of using fly ash, lime, and bentonite to neutralize acidity of pore fluids
Acidic groundwater resulting from the poorly planned use of acid sulfate soils has become a major environmental issue in coastal Australia over the last several years. Use of permeable reactive barriers (PRBs) designed to generate alkalinity by promoting sulfate reduction has recently become popular as an alternative solution to this problem. However, recent studies have also revealed that the long-term performance of such PRBs can be significantly undermined by chemical precipitation and clogging of pore space, which would decrease the buffer capacity and hydraulic conductivity of the reactive material. This study seeks to explore the feasibility of using bentonite in addition to lime and fly ash to form mixtures with a high buffer capacity and permeability that would enable groundwater flow through PRBs over a substantial period of time. A series of laboratory experiments, including buffer capacity and leaching tests, were performed on different mixtures of fly ash with lime and bentonite using acidic fluids of low pH. It was found that the ability of such mixtures to neutralize acidic fluids was mostly controlled by the content of lime. Laboratory data also showed that an addition of bentonite to lime-fly ash mixtures could decrease the buffer capacity of soil. Compaction tests indicated that the presence of bentonite would increase the dry density of mixtures at the optimum moisture content. A series of hydraulic conductivity tests were carried out to study changes in the coefficient of permeability of lime-fly ash mixtures with different contents of bentonite permeated with acidic liquids. The obtained results revealed that the coefficient of permeability of the specimens tended to increase over a period of time, likely due to the changes in the diffuse double layer of bentonite particles.Griffith Sciences, Griffith School of EngineeringFull Tex
