16 research outputs found

    Revealing hidden species distribution with pheromones: the case of Synanthedon vespiformis (Lepidoptera: Sesiidae) in Sweden

    Get PDF
    Synanthedon vespiformis L. (Lepidoptera: Sesiidae) is considered a rare insect in Sweden, discovered in 1860, with only a few observations recorded until a sex pheromone attractant became available recently. This study details a national survey conducted using pheromones as a sampling method for this species. Through pheromone trapping we captured 439 specimens in Southern Sweden at 77 sites, almost tripling the number of previously reported records for this species. The results suggest that S. vespiformis is truly a rare species with a genuinely scattered distribution, but can be locally abundant. Habitat analyses were conducted in order to test the relationship between habitat quality and the number of individuals caught. In Sweden, S. vespiformis is thought to be associated with oak hosts, but our attempts to predict its occurrence by the abundance of oaks yielded no significant relationships. We therefore suggest that sampling bias and limited knowledge on distribution may have led to the assumption that this species is primarily reliant on oaks in the northern part of its range, whereas it may in fact be polyphagous, similar to S. vespiformis found as an agricultural pest in Central and Southern Europe. We conclude that pheromones can massively enhance sampling potential for this and other rare lepidopteran species. Large-scale pheromone-based surveys provide a snapshot of true presences and absences across a considerable part of a species national distribution range, and thus for the first time provide a viable means of systematically assessing changes in distribution over time with high spatiotemporal resolution

    Geographic origin and migration phenology of European red admirals (Vanessa atalanta) as revealed by stable isotopes.

    Get PDF
    BACKGROUND: Long-distance migration has evolved multiple times in different animal taxa. For insect migrants, the complete annual migration cycle covering several thousand kilometres, may be performed by several generations, each migrating part of the distance and reproducing. Different life-cycle stages and preferred orientation may thus, be found along the migration route. For migrating red admirals (Vanessa atalanta) it has been questioned if they reproduce in the most northern part of the range. Here we present migration phenology data from a two-year time series of migrating red admirals captured at Rybachy, Kaliningrad, in the northern part of Europe investigating time for migration, life-history stage (migration, reproduction) as well as site of origin in individual butterflies. METHODS: Red admirals were captured daily at a coastal site during spring, summer and autumn in 2004 and 2005. For the sampled individuals, reproductive status and fuel content were estimated by visual inspection, and hydrogen isotopes (δ 2H) were analysed in wing samples. δ 2H values was compared with samples from two nearby reference sites in Estonia and Poland. RESULTS: Analysis of hydrogen isotopes (δ 2H) in red admiral wings showed that the spring cohort were of a southerly origin, while those caught in August or later in the autumn were from the local region or areas further to the north. All females caught during spring had developing eggs in their abdomen, but no eggs were found in late summer/autumn. There was a male-biased sex ratio during autumn and a difference in lipid content between years. When comparing the isotopic data with inland nearby locations, it was clear that the range of δ 2H values (- 181 to - 78) was wider at Rybachy as compared to the two reference sites in Estonia and Poland (- 174 to - 100). CONCLUSIONS: During spring, migratory female red admirals arrived from the south and were ready to reproduce, while the autumn passage mainly engaged local and more northern individuals carrying large fuel deposits in preparation for long-distance migration. The phenology data suggest that individuals select to migrate in favourable weather conditions and that numbers may differ between years. Future studies should focus on individual sampling at a wide range of sites to reveal differential migration strategies and timing of migration between sexes and populations of migrating butterflies

    High-Arctic butterflies become smaller with rising temperatures

    No full text
    The response of body size to increasing temperature constitutes a universal response to climate change that could strongly affect terrestrial ectotherms, but the magnitude and direction of such responses remain unknown in most species. The metabolic cost of increased temperature could reduce body size but long growing seasons could also increase body size as was recently shown in an Arctic spider species. Here, we present the longest known time series on body size variation in two High-Arctic butterfly species: Boloria chariclea and Colias hecla. We measured wing length of nearly 4500 individuals collected annually between 1996 and 2013 from Zackenberg, Greenland and found that wing length significantly decreased at a similar rate in both species in response to warmer summers. Body size is strongly related to dispersal capacity and fecundity and our results suggest that these Arctic species could face severe challenges in response to ongoing rapid climate change

    Diapause decision in the small tortoiseshell butterfly , Aglais urticae

    No full text
    Insects in temperate areas spend the inhospitable winter conditions in a resting stage known as diapause. In species that diapause in the larval or pupal stage, the decision whether to diapause or develop directly is customarily taken during the late instars, with long days (i.e., long light phases) and high temperatures promoting direct development. Among butterflies that overwinter as adults, data are rare and variable, but imply that the larval daylength conditions can affect the pathway decision. We studied the small tortoiseshell, Aglais urticae L. (Lepidoptera: Nymphalidae, Nymphalini), which is partially bivoltine from Central Scandinavia and southwards, and tested whether the pathway decision is taken in the larval or adult stage. We reared larvae under long-day (L22:D2) or short-day (L12:D12) photoperiods, and recorded the pathway taken by the eclosing adults by scoring their propensity to mate and produce eggs. We also tested whether the larval photoperiod influenced adult ability to diapause by assessing adult survival. The results clearly indicate that (1) there is no detectable effect of larval photoperiod treatment on the pathway decision taken by adults whether to enter diapause or to develop directly, (2) some individuals are obligately univoltine and insensitive to photoperiod during adulthood, whereas (3) other individuals can facultatively enter diapause or direct development, depending on the photoperiod experienced after adult eclosion
    corecore