116 research outputs found
Transiting Exoplanet Studies and Community Targets for JWST's Early Release Science Program
This is a white paper that originated from an open discussion at the Enabling Transiting Exoplanet Science with JWST workshop held November 16 - 18, 2015 at STScI (http://www.stsci.edu/jwst/science/exoplanets). Accepted for publication in PASPThis is the author accepted manuscript. The final version is available from IOP Publishing via the DOI in this record.The James Webb Space Telescope will revolutionize transiting exoplanet atmospheric science due to its capability for continuous, long-duration observations and its larger collecting area, spectral coverage, and spectral resolution compared to existing space-based facilities. However, it is unclear precisely how well JWST will perform and which of its myriad instruments and observing modes will be best suited for transiting exoplanet studies. In this article, we describe a prefatory JWST Early Release Science (ERS) program that focuses on testing specific observing modes to quickly give the community the data and experience it needs to plan more efficient and successful future transiting exoplanet characterization programs. We propose a multi-pronged approach wherein one aspect of the program focuses on observing transits of a single target with all of the recommended observing modes to identify and understand potential systematics, compare transmission spectra at overlapping and neighboring wavelength regions, confirm throughputs, and determine overall performances. In our search for transiting exoplanets that are well suited to achieving these goals, we identify 12 objects (dubbed "community targets") that meet our defined criteria. Currently, the most favorable target is WASP-62b because of its large predicted signal size, relatively bright host star, and location in JWST's continuous viewing zone. Since most of the community targets do not have well-characterized atmospheres, we recommend initiating preparatory observing programs to determine the presence of obscuring clouds/hazes within their atmospheres. Measurable spectroscopic features are needed to establish the optimal resolution and wavelength regions for exoplanet characterization. Other initiatives from our proposed ERS program include testing the instrument brightness limits and performing phase-curve observations.(Abridged)K.B.S. recognizes support from the Sagan Fellowship Program, supported by NASA and administered by the NASA Exoplanet Science Institute (NExScI)
Study of hadronic event-shape variables in multijet final states in pp collisions at √s=7 TeV
Peer reviewe
Constraints on parton distribution functions and extraction of the strong coupling constant from the inclusive jet cross section in pp collisions at √s=7 TeV
Peer reviewe
Nano-surgery at the leukocyte–endothelial docking site
The endothelium has an important role in controlling the extravasation of leukocytes from blood to tissues. Endothelial permeability for leukocytes is influenced by transmembrane proteins that control inter-endothelial adhesion, as well as steps of the leukocyte transmigration process. In a cascade consisting of leukocyte rolling, adhesion, firm adhesion, and diapedesis, a new step was recently introduced, the formation of a docking structure or “transmigratory cup.” Both terms describe a structure formed by endothelial pseudopods embracing the leukocyte. It has been found associated with both para- and transcellular diapedesis. The aim of this study was to characterize the leukocyte–endothelial contact area in terms of morphology and cell mechanics to investigate how the endothelial cytoskeleton reorganizes to engulf the leukocyte. We used atomic force microscopy (AFM) to selectively remove the leukocyte and then analyze the underlying cell at this specific spot. Firmly attached leukocytes could be removed by AFM nanomanipulation. In few cases, this exposed 8–12 μm wide and 1 μm deep footprints, representing the cup-like docking structure. Some of them were located near endothelial cell junctions. The interaction area did not exhibit significant alterations neither morphologically nor mechanically as compared to the surrounding cell surface. In conclusion, the endothelial invagination is formed without a net depolymerization of f-actin, as endothelial softening at the site of adhesion does not seem to be involved. Moreover, there were no cases of phagocytotic engulfment, but instead the formation of a transmigratory channel could be observed
Prognostic impact of C-REL expression in diffuse large B-cell lymphoma
Diffuse large B-cell lymphoma (DLBCL) with a germinal center B-cell (GCB) phenotype is believed to confer a better prognosis than DLBCL with an activated B-cell (ABC) phenotype. Previous studies have suggested that nuclear factor-κB (NF-κB) activation plays an important role in the ABC subtype of DLBCL, whereas c-REL amplification is associated with the GCB subtype. Using immunohistochemical techniques, we examined 68 newly diagnosed de novo DLBCL cases (median follow-up 44 months, range 1 to 142 months) for the expression of c-REL, BCL-6, CD10, and MUM1/IRF4. Forty-four (65%) cases demonstrated positive c-REL nuclear expression. In this cohort of patients, the GCB phenotype was associated with a better overall survival (OS) than the non-GCB phenotype (Kaplan–Meier survival (KMS) analysis, p = 0.016, Breslow–Gehan–Wilcoxon test). In general, c-REL nuclear expression did not correlate with GCB vs. non-GCB phenotype, International Prognostic Index score, or OS. However, cases with a GCB phenotype and negative nuclear c-REL demonstrated better OS than cases with a GCB phenotype and positive nuclear c-REL (KMS analysis, p = 0.045, Breslow–Gehan–Wilcoxon test), whereas in cases with non-GCB phenotype, the expression of c-REL did not significantly impact the prognosis. These results suggest that c-REL nuclear expression may be a prognostic factor in DLBCL and it may improve patient risk stratification in combination with GCB/non-GCB phenotyping
Study of Vector Boson Scattering and Search for New Physics in Events with Two Same-Sign Leptons and Two Jets
A study of vector boson scattering in pp collisions at a center-of-mass energy of 8 TeV is presented. The data sample corresponds to an integrated luminosity of 19.4 fb(-1) collected with the CMS detector. Candidate events are selected with exactly two leptons of the same charge, two jets with large rapidity separation and high dijet mass, and moderate missing transverse energy. The signal region is expected to be dominated by electroweak same-sign W-boson pair production. The observation agrees with the standard model prediction. The observed significance is 2.0 standard deviations, where a significance of 3.1 standard deviations is expected based on the standard model. Cross section measurements for (WW +/-)-W-+/- and WZ processes in the fiducial region are reported. Bounds on the structure of quartic vector-boson interactions are given in the framework of dimension-eight effective field theory operators, as well as limits on the production of doubly charged Higgs bosons
Measurement of prompt J/ψ pair production in pp collisions at√s = 7 Tev
Abstract: Production of prompt J/ψ meson pairs in proton-proton collisions at (formula presented.) = 7 TeV is measured with the CMS experiment at the LHC in a data sample corresponding to an integrated luminosity of about 4.7 fb−1. The two J/ψ mesons are fully reconstructed via their decays into μ+μ− pairs. This observation provides for the first time access to the high-transverse-momentum region of J/ψ pair production where model predictions are not yet established. The total and differential cross sections are measured in a phase space defined by the individual J/ψ transverse momentum (pTJ/ψ) and rapidity (|yJ/ψ|): |yJ/ψ | 6.5 GeV/c; 1.2 4.5 GeV/c. The total cross section, assuming unpolarized prompt J/ψ pair production is 1.49 ± 0.07 (stat) ±0.13 (syst) nb. Different assumptions about the J/ψ polarization imply modifications to the cross section ranging from −31% to +27%
The influence of contextual factors on healthcare quality improvement initiatives:a realist review
Background Recognising the influence of context and the context-sensitive nature of quality improvement (QI) interventions is crucial to implementing effective improvements and successfully replicating them in new settings, yet context is still poorly understood. To address this challenge, it is necessary to capture generalisable knowledge, first to understand which aspects of context are most important to QI and why, and secondly, to explore how these factors can be managed to support healthcare improvement, in terms of implementing successful improvement initiatives, achieving sustainability and scaling interventions. The research question was how and why does context influence quality improvement initiatives in healthcare? Methods A realist review explored the contextual conditions that influence healthcare improvement. Realist methodology integrates theoretical understanding and stakeholder input with empirical research findings. The review aimed to identify and understand the role of context during the improvement cycle, i.e. planning, implementation, sustainability and transferability; and distil new knowledge to inform the design and development of context-sensitive QI initiatives. We developed a preliminary theory of the influence of context to arrive at a conceptual and theoretical framework. Results Thirty-five studies were included in the review, demonstrating the interaction of key contextual factors across healthcare system levels during the improvement cycle. An evidence-based explanatory theoretical model is proposed to illustrate the interaction between contextual factors, system levels (macro, meso, micro) and the stages of the improvement journey. Findings indicate that the consideration of these contextual factors would enhance the design and delivery of improvement initiatives, across a range of improvement settings. Conclusions This is the first realist review of context in QI and contributes to a deeper understanding of how context influences quality improvement initiatives. The distillation of key contextual factors offers the potential to inform the design and development of context-sensitive interventions to enhance improvement initiatives and address the challenge of spread and sustainability. Future research should explore the application of our conceptual model to enhance improvement-planning processes
Vascular permeability, vascular hyperpermeability and angiogenesis
The vascular system has the critical function of supplying tissues with nutrients and clearing waste products. To accomplish these goals, the vasculature must be sufficiently permeable to allow the free, bidirectional passage of small molecules and gases and, to a lesser extent, of plasma proteins. Physiologists and many vascular biologists differ as to the definition of vascular permeability and the proper methodology for its measurement. We review these conflicting views, finding that both provide useful but complementary information. Vascular permeability by any measure is dramatically increased in acute and chronic inflammation, cancer, and wound healing. This hyperpermeability is mediated by acute or chronic exposure to vascular permeabilizing agents, particularly vascular permeability factor/vascular endothelial growth factor (VPF/VEGF, VEGF-A). We demonstrate that three distinctly different types of vascular permeability can be distinguished, based on the different types of microvessels involved, the composition of the extravasate, and the anatomic pathways by which molecules of different size cross-vascular endothelium. These are the basal vascular permeability (BVP) of normal tissues, the acute vascular hyperpermeability (AVH) that occurs in response to a single, brief exposure to VEGF-A or other vascular permeabilizing agents, and the chronic vascular hyperpermeability (CVH) that characterizes pathological angiogenesis. Finally, we list the numerous (at least 25) gene products that different authors have found to affect vascular permeability in variously engineered mice and classify them with respect to their participation, as far as possible, in BVP, AVH and CVH. Further work will be required to elucidate the signaling pathways by which each of these molecules, and others likely to be discovered, mediate the different types of vascular permeability
New developments in the pathology of malignant lymphoma: a review of the literature published from January to August 2009
- …
