1,606 research outputs found
Steps in the bacterial flagellar motor
The bacterial flagellar motor is a highly efficient rotary machine used by
many bacteria to propel themselves. It has recently been shown that at low
speeds its rotation proceeds in steps [Sowa et al. (2005) Nature 437,
916--919]. Here we propose a simple physical model that accounts for this
stepping behavior as a random walk in a tilted corrugated potential that
combines torque and contact forces. We argue that the absolute angular position
of the rotor is crucial for understanding step properties, and show this
hypothesis to be consistent with the available data, in particular the
observation that backward steps are smaller on average than forward steps. Our
model also predicts a sublinear torque-speed relationship at low torque, and a
peak in rotor diffusion as a function of torque
From empowering the shameful to shaming the empowered: Shifting depictions of the poor in 'reality TV'
Poor-blaming and poor-shaming have become intrinsic parts of the neoliberal order. For neoliberal discourse to enter and to dominate wider public ‘common sense’, vehicles of ‘populist language’ are required and the mass media has taken a central place in propagandising neoliberalism through their narration of poverty. This article focuses on so-called ‘reality TV’ and its neoliberal framing of the poor, particularly since 2007 and specifically in its generation of support for, and acquiescence in, ‘austerity’. We argue that what these programmes provide is a representation of poverty which is politically expedient but socially divisive. As criminologists, we suggest that this representation symbolises the intensification of what Cohen (2002: xxi) noted as the prominence of ‘“welfare cheats”, “social security frauds” and “dole scroungers” as fairly traditional folk devils. Further, we argue that an intensification in the denigration of the poor and the marginal in these programmes can be traced across three phases, from 2009 onwards, defined by their key features. Whilst not neatly discrete, these phases mirror the neoliberal political shift from welfare to punishment. They manufacture ‘epidemic problems’ that are seen to require urgent remediation. Yet the status and nature of these problems are defined through deception and the forms of intervention required are determined through individualised and moralised neoliberal prescription
Geo-environmental mapping using physiographic analysis: constraints on the evaluation of land instability and groundwater pollution hazards in the Metropolitan District of Campinas, Brazil
Geo-environmental terrain assessments and territorial zoning are useful tools for the formulation and implementation of environmental management instruments (including policy-making, planning, and enforcement of statutory regulations). They usually involve a set of procedures and techniques for delimitation, characterisation and classification of terrain units. However, terrain assessments and zoning exercises are often costly and time-consuming, particularly when encompassing large areas, which in many cases prevent local agencies in developing countries from properly benefiting from such assessments. In the present paper, a low-cost technique based on the analysis of texture of satellite imagery was used for delimitation of terrain units. The delimited units were further analysed in two test areas situated in Southeast Brazil to provide estimates of land instability and the vulnerability of groundwater to pollution hazards. The implementation incorporated procedures for inferring the influences and potential implications of tectonic fractures and other discontinuities on ground behaviour and local groundwater flow. Terrain attributes such as degree of fracturing, bedrock lithology and weathered materials were explored as indicators of ground properties. The paper also discusses constraints on- and limitations of- the approaches taken
Protein disulfide-isomerase interacts with a substrate protein at all stages along its folding pathway
In contrast to molecular chaperones that couple protein folding to ATP hydrolysis, protein disulfide-isomerase (PDI) catalyzes protein folding coupled to formation of disulfide bonds (oxidative folding). However, we do not know how PDI distinguishes folded, partly-folded and unfolded protein substrates. As a model intermediate in an oxidative folding pathway, we prepared a two-disulfide mutant of basic pancreatic trypsin inhibitor (BPTI) and showed by NMR that it is partly-folded and highly dynamic. NMR studies show that it binds to PDI at the same site that binds peptide ligands, with rapid binding and dissociation kinetics; surface plasmon resonance shows its interaction with PDI has a Kd of ca. 10−5 M. For comparison, we characterized the interactions of PDI with native BPTI and fully-unfolded BPTI. Interestingly, PDI does bind native BPTI, but binding is quantitatively weaker than with partly-folded and unfolded BPTI. Hence PDI recognizes and binds substrates via permanently or transiently unfolded regions. This is the first study of PDI's interaction with a partly-folded protein, and the first to analyze this folding catalyst's changing interactions with substrates along an oxidative folding pathway. We have identified key features that make PDI an effective catalyst of oxidative protein folding – differential affinity, rapid ligand exchange and conformational flexibility
Complex Fluids and Hydraulic Fracturing
Nearly 70 years old, hydraulic fracturing is a core technique for stimulating hydrocarbon production in a majority of oil and gas reservoirs. Complex fluids are implemented in nearly every step of the fracturing process, most significantly to generate and sustain fractures and transport and distribute proppant particles during and following fluid injection. An extremely wide range of complex fluids are used: naturally occurring polysaccharide and synthetic polymer solutions, aqueous physical and chemical gels, organic gels, micellar surfactant solutions, emulsions, and foams. These fluids are loaded over a wide range of concentrations with particles of varying sizes and aspect ratios and are subjected to extreme mechanical and environmental conditions. We describe the settings of hydraulic fracturing (framed by geology), fracturing mechanics and physics, and the critical role that non-Newtonian fluid dynamics and complex fluids play in the hydraulic fracturing process
Stochastic Gravity: Theory and Applications
Whereas semiclassical gravity is based on the semiclassical Einstein equation
with sources given by the expectation value of the stress-energy tensor of
quantum fields, stochastic semiclassical gravity is based on the
Einstein-Langevin equation, which has in addition sources due to the noise
kernel.In the first part, we describe the fundamentals of this new theory via
two approaches: the axiomatic and the functional. In the second part, we
describe three applications of stochastic gravity theory. First, we consider
metric perturbations in a Minkowski spacetime: we compute the two-point
correlation functions for the linearized Einstein tensor and for the metric
perturbations. Second, we discuss structure formation from the stochastic
gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in
the gravitational background of a quasi-static black hole.Comment: 75 pages, no figures, submitted to Living Reviews in Relativit
Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
Functional diversity of mesograzers in an eelgrass-epiphyte system
Historically, small invertebrate grazers in marine plant communities have been considered to be a relatively homogeneous group in their impact on ecosystem processes. However, recent studies propose that species composition is an important agent in determining grazer effects. We used four mesocosm experiments to test the biomass-specific and density-dependent effects of common mesograzers in temperate regions (Littorina littorea, Rissoa membranacea, Idotea baltica and Gammarus oceanicus) on epiphyte and eelgrass biomass and productivity. Mesograzer species identity strongly influenced epiphyte accumulation and eelgrass growth, where Rissoa was the most efficient mesograzer (per biomass) and Gammarus had the weakest impact. Density-dependent effects varied considerably among species. Both gastropod species reduced epiphyte accumulation in direct proportion to their density, and Littorina had the strongest negative effect on epiphyte biomass. The impact of Idotea seemed to level off to a threshold value and Gammarus had no density-dependent effect on epiphyte accumulation at all. Rissoa and Idotea increased eelgrass productivity in accordance with their effect on epiphyte accumulation, whereas Littorina showed a less positive effect than could be expected by its strong impact on epiphyte biomass. Gammarus had no significant impact on eelgrass growth. Our results show that the different functional traits of superficially similar mesograzers can have important consequences for ecosystem processes in macrophyte systems
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
Planetary population synthesis
In stellar astrophysics, the technique of population synthesis has been
successfully used for several decades. For planets, it is in contrast still a
young method which only became important in recent years because of the rapid
increase of the number of known extrasolar planets, and the associated growth
of statistical observational constraints. With planetary population synthesis,
the theory of planet formation and evolution can be put to the test against
these constraints. In this review of planetary population synthesis, we first
briefly list key observational constraints. Then, the work flow in the method
and its two main components are presented, namely global end-to-end models that
predict planetary system properties directly from protoplanetary disk
properties and probability distributions for these initial conditions. An
overview of various population synthesis models in the literature is given. The
sub-models for the physical processes considered in global models are
described: the evolution of the protoplanetary disk, the planets' accretion of
solids and gas, orbital migration, and N-body interactions among concurrently
growing protoplanets. Next, typical population synthesis results are
illustrated in the form of new syntheses obtained with the latest generation of
the Bern model. Planetary formation tracks, the distribution of planets in the
mass-distance and radius-distance plane, the planetary mass function, and the
distributions of planetary radii, semimajor axes, and luminosities are shown,
linked to underlying physical processes, and compared with their observational
counterparts. We finish by highlighting the most important predictions made by
population synthesis models and discuss the lessons learned from these
predictions - both those later observationally confirmed and those rejected.Comment: 47 pages, 12 figures. Invited review accepted for publication in the
'Handbook of Exoplanets', planet formation section, section editor: Ralph
Pudritz, Springer reference works, Juan Antonio Belmonte and Hans Deeg, Ed
- …
