218 research outputs found
The "Persuadable Middle" on Same-Sex Marriage: Formative Research to Build Support among Heterosexual College Students
Same-sex marriage is a controversial policy issue that affects the welfare of gay and lesbian couples throughout the USA. Considerable research examines opinions about same-sex marriage; however, studies have not investigated the covariates of the “persuadable middle”— those individuals who are neutral or unsure about their views. This group of people is often the target of same-sex marriage campaigns, yet they have received no empirical attention.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/89607/1/Woodford et al 2011 Persuadable Middle.pd
Altered processing of sensory stimuli in patients with migraine
Migraine is a cyclic disorder, in which functional and morphological brain changes fluctuate over time, culminating periodically in an attack. In the migrainous brain, temporal processing of external stimuli and sequential recruitment of neuronal networks are often dysfunctional. These changes reflect complex CNS dysfunction patterns. Assessment of multimodal evoked potentials and nociceptive reflex responses can reveal altered patterns of the brain's electrophysiological activity, thereby aiding our understanding of the pathophysiology of migraine. In this Review, we summarize the most important findings on temporal processing of evoked and reflex responses in migraine. Considering these data, we propose that thalamocortical dysrhythmia may be responsible for the altered synchronicity in migraine. To test this hypothesis in future research, electrophysiological recordings should be combined with neuroimaging studies so that the temporal patterns of sensory processing in patients with migraine can be correlated with the accompanying anatomical and functional changes
Application of Acoustic Telemetry to Assess Residency and Movements of Rockfish and Lingcod at Created and Natural Habitats in Prince William Sound
Loss and/or degradation of nearshore habitats have led to increased efforts to restore or enhance many of these habitats, particularly those that are deemed essential for marine fishes. Copper rockfish (Sebastes caurinus) and lingcod (Ophiodon enlongatus) are dominant members of the typical reef fish community that inhabit rocky and high-relief substrates along the Pacific Northwest. We used acoustic telemetry to document their residency and movements in the nearshore waters of Prince William Sound, Alaska in order to assess use of created reef habitat in an individual-based manner. A total of 57 fish were surgically implanted with acoustic transmitters. Forty-five fish were captured and monitored in three habitats: artificial reef, low-relief natural reef, and patchy high-relief natural reef. Within each habitat, both rockfish and lingcod exhibited long periods of residency with limited movements. Twelve rockfish were captured at the natural reefs and displaced a distance of 4.0 km to the artificial reef. Five of the 12 rockfish returned within 10 d of their release to their initial capture site. Another five of the 12 displaced fish established residency at the artificial reef through the duration of our study. Our results suggest the potential for artificial reefs to provide rockfish habitat in the event of disturbances to natural habitat
The need of a weight management control program in judo: a proposal based on the successful case of wrestling
Does Sex-Selective Predation Stabilize or Destabilize Predator-Prey Dynamics?
Background: Little is known about the impact of prey sexual dimorphism on predator-prey dynamics and the impact of sexselective
harvesting and trophy hunting on long-term stability of exploited populations.
Methodology and Principal Findings: We review the quantitative evidence for sex-selective predation and study its longterm
consequences using several simple predator-prey models. These models can be also interpreted in terms of feedback
between harvesting effort and population size of the harvested species under open-access exploitation. Among the 81
predator-prey pairs found in the literature, male bias in predation is 2.3 times as common as female bias. We show that
long-term effects of sex-selective predation depend on the interplay of predation bias and prey mating system. Predation
on the ‘less limiting’ prey sex can yield a stable predator-prey equilibrium, while predation on the other sex usually
destabilizes the dynamics and promotes population collapses. For prey mating systems that we consider, males are less
limiting except for polyandry and polyandrogyny, and male-biased predation alone on such prey can stabilize otherwise
unstable dynamics. On the contrary, our results suggest that female-biased predation on polygynous, polygynandrous or
monogamous prey requires other stabilizing mechanisms to persist.
Conclusions and Significance: Our modelling results suggest that the observed skew towards male-biased predation might
reflect, in addition to sexual selection, the evolutionary history of predator-prey interactions. More focus on these
phenomena can yield additional and interesting insights as to which mechanisms maintain the persistence of predator-prey
pairs over ecological and evolutionary timescales. Our results can also have implications for long-term sustainability of
harvesting and trophy hunting of sexually dimorphic species
Executive Function and Falls in Older Adults: New Findings from a Five-Year Prospective Study Link Fall Risk to Cognition
Background: Recent findings suggest that executive function (EF) plays a critical role in the regulation of gait in older adults, especially under complex and challenging conditions, and that EF deficits may, therefore, contribute to fall risk. The objective of this study was to evaluate if reduced EF is a risk factor for future falls over the course of 5 years of follow-up. Secondary objectives were to assess whether single and dual task walking abilities, an alternative window into EF, were associated with fall risk. Methodology/Main Results We longitudinally followed 256 community-living older adults (age: 76.4±4.5 yrs; 61% women) who were dementia free and had good mobility upon entrance into the study. At baseline, a computerized cognitive battery generated an index of EF, attention, a closely related construct, and other cognitive domains. Gait was assessed during single and dual task conditions. Falls data were collected prospectively using monthly calendars. Negative binomial regression quantified risk ratios (RR). After adjusting for age, gender and the number of falls in the year prior to the study, only the EF index (RR: .85; CI: .74–.98, p = .021), the attention index (RR: .84; CI: .75–.94, p = .002) and dual tasking gait variability (RR: 1.11; CI: 1.01–1.23; p = .027) were associated with future fall risk. Other cognitive function measures were not related to falls. Survival analyses indicated that subjects with the lowest EF scores were more likely to fall sooner and more likely to experience multiple falls during the 66 months of follow-up (p<0.02). Conclusions/Significance: These findings demonstrate that among community-living older adults, the risk of future falls was predicted by performance on EF and attention tests conducted 5 years earlier. The present results link falls among older adults to cognition, indicating that screening EF will likely enhance fall risk assessment, and that treatment of EF may reduce fall risk
Sequential induction of three recombination directionality factors directs assembly of tripartite integrative and conjugative elements
Tripartite integrative and conjugative elements (ICE3) are a novel form of ICE that exist as three separate DNA regions integrated within the genomes of Mesorhizobium spp. Prior to conjugative transfer the three ICE3 regions of M. ciceri WSM1271 ICEMcSym1271 combine and excise to form a single circular element. This assembly requires three coordinated recombination events involving three site-specific recombinases IntS, IntG and IntM. Here, we demonstrate that three excisionases–or recombination directionality factors—RdfS, RdfG and RdfM are required for ICE3 excision. Transcriptome sequencing revealed that expression of ICE3 transfer and conjugation genes was induced by quorum sensing. Quorum sensing activated expression of rdfS, and in turn RdfS stimulated transcription of both rdfG and rdfM. Therefore, RdfS acts as a “master controller” of ICE3 assembly and excision. The dependence of all three excisive reactions on RdfS ensures that ICE3 excision occurs via a stepwise sequence of recombination events that avoids splitting the chromosome into a non-viable configuration. These discoveries expose a surprisingly simple control system guiding molecular assembly of these novel and complex mobile genetic elements and highlight the diverse and critical functions of excisionase proteins in control of horizontal gene transfer
Myocardial tagging by Cardiovascular Magnetic Resonance: evolution of techniques--pulse sequences, analysis algorithms, and applications
Cardiovascular magnetic resonance (CMR) tagging has been established as an essential technique for measuring regional myocardial function. It allows quantification of local intramyocardial motion measures, e.g. strain and strain rate. The invention of CMR tagging came in the late eighties, where the technique allowed for the first time for visualizing transmural myocardial movement without having to implant physical markers. This new idea opened the door for a series of developments and improvements that continue up to the present time. Different tagging techniques are currently available that are more extensive, improved, and sophisticated than they were twenty years ago. Each of these techniques has different versions for improved resolution, signal-to-noise ratio (SNR), scan time, anatomical coverage, three-dimensional capability, and image quality. The tagging techniques covered in this article can be broadly divided into two main categories: 1) Basic techniques, which include magnetization saturation, spatial modulation of magnetization (SPAMM), delay alternating with nutations for tailored excitation (DANTE), and complementary SPAMM (CSPAMM); and 2) Advanced techniques, which include harmonic phase (HARP), displacement encoding with stimulated echoes (DENSE), and strain encoding (SENC). Although most of these techniques were developed by separate groups and evolved from different backgrounds, they are in fact closely related to each other, and they can be interpreted from more than one perspective. Some of these techniques even followed parallel paths of developments, as illustrated in the article. As each technique has its own advantages, some efforts have been made to combine different techniques together for improved image quality or composite information acquisition. In this review, different developments in pulse sequences and related image processing techniques are described along with the necessities that led to their invention, which makes this article easy to read and the covered techniques easy to follow. Major studies that applied CMR tagging for studying myocardial mechanics are also summarized. Finally, the current article includes a plethora of ideas and techniques with over 300 references that motivate the reader to think about the future of CMR tagging
Search for Higgs boson pair production in the gamma gamma b(b)over-bar final state in pp collisions at root s=13 TeV
A search is presented for the production of a pair of Higgs bosons, where one decays into two photons and the other one into a bottom quark-antiquark pair. The analysis is performed using proton-proton collision data at root s = 13 TeV recorded in 2016 by the CMS detector at the LHC, corresponding to an integrated luminosity of 35.9 fb(-1) . The results are in agreement with standard model (SM) predictions. In a search for resonant production, upper limits are set on the cross section for new spin-0 or spin-2 particles. For the SM-like nonresonant production hypothesis, the data exclude a product of cross section and branching fraction larger than 2.0 fb at 95% confidence level (CL), corresponding to about 24 times the SM prediction. Values of the effective Higgs boson self-coupling K X are constrained to be within the range -11 < K-lambda < 17 at 95% CL, assuming all other Higgs boson couplings are at their SM value. The constraints on K-lambda, are the most restrictive to date. (C) 2018 The Author(s). Published by Elsevier B.V.Peer reviewe
Chemokines in rheumatoid arthritis
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46938/1/281_2004_Article_BF00832002.pd
- …
