26 research outputs found

    Melanoma Spheroids Grown Under Neural Crest Cell Conditions Are Highly Plastic Migratory/Invasive Tumor Cells Endowed with Immunomodulator Function

    Get PDF
    International audienceBACKGROUND: The aggressiveness of melanoma tumors is likely to rely on their well-recognized heterogeneity and plasticity. Melanoma comprises multi-subpopulations of cancer cells some of which may possess stem cell-like properties. Although useful, the sphere-formation assay to identify stem cell-like or tumor initiating cell subpopulations in melanoma has been challenged, and it is unclear if this model can predict a functional phenotype associated with aggressive tumor cells. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed the molecular and functional phenotypes of melanoma spheroids formed in neural crest cell medium. Whether from metastatic or advanced primary tumors, spheroid cells expressed melanoma-associated markers. They displayed higher capacity to differentiate along mesenchymal lineages and enhanced expression of SOX2, NANOG, KLF4, and/or OCT4 transcription factors, but not enhanced self-renewal or tumorigenicity when compared to their adherent counterparts. Gene expression profiling attributed a neural crest cell signature to these spheroids and indicated that a migratory/invasive and immune-function modulating program could be associated with these cells. In vitro assays confirmed that spheroids display enhanced migratory/invasive capacities. In immune activation assays, spheroid cells elicited a poorer allogenic response from immune cells and inhibited mitogen-dependent T cells activation and proliferation more efficiently than their adherent counterparts. Our findings reveal a novel immune-modulator function of melanoma spheroids and suggest specific roles for spheroids in invasion and in evasion of antitumor immunity. CONCLUSION/SIGNIFICANCE: The association of a more plastic, invasive and evasive, thus a more aggressive tumor phenotype with melanoma spheroids reveals a previously unrecognized aspect of tumor cells expanded as spheroid cultures. While of limited efficiency for melanoma initiating cell identification, our melanoma spheroid model predicted aggressive phenotype and suggested that aggressiveness and heterogeneity of melanoma tumors can be supported by subpopulations other than cancer stem cells. Therefore, it could be constructive to investigate melanoma aggressiveness, relevant to patients and clinical transferability

    International Consensus Statement on Rhinology and Allergy: Rhinosinusitis

    Get PDF
    Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR‐RS‐2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence‐based findings of the document. Methods: ICAR‐RS presents over 180 topics in the forms of evidence‐based reviews with recommendations (EBRRs), evidence‐based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICAR‐RS‐2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence‐based management algorithm is provided. Conclusion: This ICAR‐RS‐2021 executive summary provides a compilation of the evidence‐based recommendations for medical and surgical treatment of the most common forms of RS

    Partial Mesenchymal to Epithelial Reverting Transition in Breast and Prostate Cancer Metastases

    No full text
    Epithelial to mesenchymal transition (EMT) is an oft-studied mechanism for the initiation of metastasis. We have recently shown that once cancer cells disseminate to a secondary organ, a mesenchymal to epithelial reverting transition (MErT) may occur, which we postulate is to enable metastatic colonization. Despite a wealth of in vitro and in vivo studies, evidence supportive of MErT in human specimens is rare and difficult to document because clinically detectable metastases are typically past the micrometastatic stage at which this transition is most likely evident. We obtained paired primary and metastatic tumors from breast and prostate cancer patients and evaluated expression of various epithelial and mesenchymal markers by immunohistochemistry. The metastases exhibited increased expression of membranous E-cadherin compared to primary tumors, consistent with EMT at the primary site and MErT at the metastatic site. However, the re-emergence of the epithelial phenotype was only partial or incomplete. Expression of epithelial markers connexins 26 and/or 43 was also increased on the majority of metastases, particularly those to the brain. Despite the upregulation of epithelial markers in metastases, expression of mesenchymal markers vimentin and FSP1 was mostly unchanged. We also examined prostate carcinoma metastases of varied sizes and found that while E-cadherin expression was increased compared to the primary lesion, the expression inversely correlated with size of the metastasis. This not only suggests that a second EMT may occur in the ectopic site for tumor growth or to seed further metastases, but also provides a basis for the failure to discern epithelial phenotypes in clinically examined macrometastases. In summary, we report increased expression of epithelial markers and persistence of mesenchymal markers consistent with a partial MErT that readily allows for a second EMT at the metastatic site. Our results suggest that cancer cells continue to display phenotypic plasticity beyond the EMT that initiates metastasis
    corecore