48 research outputs found

    Unravelling enzymatic discoloration in potato through a combined approach of candidate genes, QTL, and expression analysis

    Get PDF
    Enzymatic discoloration (ED) of potato tubers was investigated in an attempt to unravel the underlying genetic factors. Both enzyme and substrate concentration have been reported to influence the degree of discoloration and as such this trait can be regarded as polygenic. The diploid mapping population C × E, consisting of 249 individuals, was assayed for the degree of ED and levels of chlorogenic acid and tyrosine. Using this data, Quantitative Trait Locus (QTL) analysis was performed. Three QTLs for ED have been found on parental chromosomes C3, C8, E1, and E8. For chlorogenic acid a QTL has been identified on C2 and for tyrosine levels, a QTL has been detected on C8. None of the QTLs overlap, indicating the absence of genetic correlations between these components underlying ED, in contrast to earlier reports in literature. An obvious candidate gene for the QTL for ED on Chromosome 8 is polyphenol oxidase (PPO), which was previously mapped on chromosome 8. With gene-specific primers for PPO gene POT32 a CAPS marker was developed. Three different alleles (POT32-1, -2, and -3) could be discriminated. The segregating POT32 alleles were used to map the POT32 CAPS marker and QTL analysis was redone, showing that POT32 coincides with the QTL peak. A clear correlation between allele combinations and degree of discoloration was observed. In addition, analysis of POT32 gene expression in a subset of genotypes indicated a correlation between the level of gene expression and allele composition. On average, genotypes having two copies of allele 1 had both the highest degree of discoloration as well as the highest level of POT32 gene expression

    Identification of alleles of carotenoid pathway genes important for zeaxanthin accumulation in potato tubers

    Get PDF
    We have investigated the genetics and molecular biology of orange flesh colour in potato (Solanum tuberosum L.). To this end the natural diversity in three genes of the carotenoid pathway was assessed by SNP analyses. Association analysis was performed between SNP haplotypes and flesh colour phenotypes in diploid and tetraploid potato genotypes. We observed that among eleven beta-carotene hydroxylase 2 (Chy2) alleles only one dominant allele has a major effect, changing white into yellow flesh colour. In contrast, none of the lycopene epsilon cyclase (Lcye) alleles seemed to have a large effect on flesh colour. Analysis of zeaxanthin epoxidase (Zep) alleles showed that all (diploid) genotypes with orange tuber flesh were homozygous for one specific Zep allele. This Zep allele showed a reduced level of expression. The complete genomic sequence of the recessive Zep allele, including the promoter, was determined, and compared with the sequence of other Zep alleles. The most striking difference was the presence of a non-LTR retrotransposon sequence in intron 1 of the recessive Zep allele, which was absent in all other Zep alleles investigated. We hypothesise that the presence of this large sequence in intron 1 caused the lower expression level, resulting in reduced Zep activity and accumulation of zeaxanthin. Only genotypes combining presence of the dominant Chy2 allele with homozygosity for the recessive Zep allele produced orange-fleshed tubers that accumulated large amounts of zeaxanthin

    AFLP-based transcript profiling (cDNA-AFLP) for genome-wide expression analysis

    No full text
    Although DNA microarrays are currently the standard tool for genome-wide expression analysis, their application is limited to organisms for which the complete genome sequence or large collections of known transcript sequences are available. Here, we describe a protocol for cDNA-AFLP, an AFLP-based transcript profiling method that allows genome-wide expression analysis in any species without the need for prior sequence knowledge. In essence, the cDNA-AFLP method involves reverse transcription of mRNA into double-stranded cDNA, followed by restriction digestion, ligation of specific adapters and fractionation of this mixture of cDNA fragments into smaller subsets by selective PCR amplification. The resulting cDNA-AFLP fragments are separated on high-resolution gels, and visualization of cDNA-AFLP fingerprints is described using either a conventional autoradiography platform or an automated LI-COR system. Observed differences in band intensities between samples provide a good measure of the relative differences in the gene expression levels. Identification of differentially expressed genes can be accomplished by purifying cDNA-AFLP fragments from sequence gels and subsequent sequencing. This method has found widespread use as an attractive technology for gene discovery on the basis of fragment detection and for temporal quantitative gene expression analysis. The protocol can be completed in 3-4 d
    corecore