527 research outputs found

    Topological Crystalline Insulators in the SnTe Material Class

    Get PDF
    Topological crystalline insulators are new states of matter in which the topological nature of electronic structures arises from crystal symmetries. Here we predict the first material realization of topological crystalline insulator in the semiconductor SnTe, by identifying its nonzero topological index. We predict that as a manifestation of this nontrivial topology, SnTe has metallic surface states with an even number of Dirac cones on high-symmetry crystal surfaces such as {001}, {110} and {111}. These surface states form a new type of high-mobility chiral electron gas, which is robust against disorder and topologically protected by reflection symmetry of the crystal with respect to {110} mirror plane. Breaking this mirror symmetry via elastic strain engineering or applying an in-plane magnetic field can open up a continuously tunable band gap on the surface, which may lead to wide-ranging applications in thermoelectrics, infrared detection, and tunable electronics. Closely related semiconductors PbTe and PbSe also become topological crystalline insulators after band inversion by pressure, strain and alloying.Comment: submitted on Feb. 10, 2012; to appear in Nature Communications; 5 pages, 4 figure

    Hydroxylated TiO2-induced high-density Ni clusters for breaking the activity-selectivity trade-off of CO2 hydrogenation

    Get PDF
    The reverse water gas shift reaction can be considered as a promising route to mitigate global warming by converting CO2 into syngas in a large scale, while it is still challenging for non-Cu-based catalysts to break the trade-off between activity and selectivity. Here, the relatively high loading of Ni species is highly dispersed on hydroxylated TiO2 through the strong Ni and -OH interactions, thereby inducing the formation of rich and stable Ni clusters (~1 nm) on anatase TiO2 during the reverse water gas shift reaction. This Ni cluster/TiO2 catalyst shows a simultaneous high CO2 conversion and high CO selectivity. Comprehensive characterizations and theoretical calculations demonstrate Ni cluster/TiO2 interfacial sites with strong CO2 activation capacity and weak CO adsorption are responsible for its unique catalytic performances. This work disentangles the activity-selectivity trade-off of the reverse water gas shift reaction, and emphasizes the importance of metal-OH interactions on surface

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Linkage Mapping of Stem Saccharification Digestibility in Rice

    Get PDF
    Rice is the staple food of almost half of the world population, and in excess 90% of it is grown and consumed in Asia, but the disposal of rice straw poses a problem for farmers, who often burn it in the fields, causing health and environmental problems. However, with increased focus on the development of sustainable biofuel production, rice straw has been recognized as a potential feedstock for non-food derived biofuel production. Currently, the commercial realization of rice as a biofuel feedstock is constrained by the high cost of industrial saccharification processes needed to release sugar for fermentation. This study is focused on the alteration of lignin content, and cell wall chemotypes and structures, and their effects on the saccharification potential of rice lignocellulosic biomass. A recombinant inbred lines (RILs) population derived from a cross between the lowland rice variety IR1552 and the upland rice variety Azucena with 271 molecular markers for quantitative trait SNP (QTS) analyses was used. After association analysis of 271 markers for saccharification potential, 1 locus and 4 pairs of epistatic loci were found to contribute to the enzymatic digestibility phenotype, and an inverse relationship between reducing sugar and lignin content in these recombinant inbred lines was identified. As a result of QTS analyses, several cell-wall associated candidate genes are proposed that may be useful for marker-assisted breeding and may aid breeders to produce potential high saccharification rice varieties

    Experimental studies of e + e -→ some charmless processes containing K S0 at √s = 3.773 and 3.65 GeV

    Get PDF
    We measure the observed cross sections for the charmless processes e + e -→K S0 K - K - K + π ++ c.c., K S0 K - π + η+c.c., K S0 K - π + π + π - η+c.c., K S0 K - K - K + π + η+c.c., K S0 K - K - K + π + π 0+c.c., K S0 K - ρ ++c.c. and K S0 K - π + ρ 0+c.c. We also extract upper limits on the branching fractions for ψ(3770) decays into these final states at 90% C.L. Analyzed data samples correspond to 17.3 pb-1 and 6.5 pb-1 integrated luminosities registered, respectively, at √s = 3.773 and 3.65 GeV, with the BES-II detector at the BEPC collider. © 2009 Springer-Verlag / Società Italiana di Fisica.published_or_final_versionSpringer Open Choice, 21 Feb 201

    Measurement of the matrix element for the decay η′→ηπ +π -

    Get PDF
    The Dalitz plot of η⊃′→ηπ⊃+π⊃- decay is studied using (225.2±2.8)×106 J/ψ events collected with the BESIII detector at the BEPCII e⊃+e⊃- collider. With the largest sample of η⊃′ decays to date, the parameters of the Dalitz plot are determined in a generalized and a linear representation. Also, the branching fraction of J/ψ→γη⊃′ is determined to be (4.84±0.03±0.24)×10⊃-3, where the first error is statistical and the second systematic. © 2011 American Physical Society.published_or_final_versio

    Determination of the number of J/ψ events with J/ψ → inclusive decays

    Get PDF
    postprin

    Higher-order multipole amplitude measurement in ψ ′→γχ c2

    Get PDF
    Using 106×106 ψ ′ events collected with the BESIII detector at the BEPCII storage ring, the higher-order multipole amplitudes in the radiative transition ψ ′→γχ c2→γπ +π -/γK +K - are measured. A fit to the χ c2 production and decay angular distributions yields M2=0.046±0. 010±0.013 and E3=0.015±0.008±0.018, where the first errors are statistical and the second systematic. Here M2 denotes the normalized magnetic quadrupole amplitude and E3 the normalized electric octupole amplitude. This measurement shows evidence for the existence of the M2 signal with 4.4σ statistical significance and is consistent with the charm quark having no anomalous magnetic moment. © 2011 American Physical Society.published_or_final_versio

    Search for ψ(3770)→ charmless final states involving η or π0 mesons

    Get PDF
    We search for ψ(3770) → π+π-η, K+K-η, pp̄η, ρ0π+π-η, K+K-π+π-η, pp̄π+π-η, pp̄K+K-η and pp̄K+K- π0 using data samples of 17.3 and 6.5 pb-1 integrated luminosities recorded at the center-of-mass energies of 3.773 and 3.65 GeV, respectively, by the BES-II detector operating at the BEPC collider. We obtain cross section measurements at both energies and upper limits on ψ(3770) decay branching fractions to the final states studied. © © Springer-Verlag / Società Italiana di Fisica 2010.published_or_final_versionSpringer Open Choice, 21 Feb 201

    Wafer-scale Fabrication of Non-Polar Mesoporous GaN Distributed Bragg Reflectors via Electrochemical Porosification

    Get PDF
    Distributed Bragg reflectors (DBRs) are essential components for the development of optoelectronic devices. For many device applications, it is highly desirable to achieve not only high reflectivity and low absorption, but also good conductivity to allow effective electrical injection of charges. Here, we demonstrate the wafer-scale fabrication of highly reflective and conductive non-polar gallium nitride (GaN) DBRs, consisting of perfectly lattice-matched non-polar (11–20) GaN and mesoporous GaN layers that are obtained by a facile one-step electrochemical etching method without any extra processing steps. The GaN/mesoporous GaN DBRs exhibit high peak reflectivities (>96%) across the entire visible spectrum and wide spectral stop-band widths (full-width at half-maximum >80nm), while preserving the material quality and showing good electrical conductivity. Such mesoporous GaN DBRs thus provide a promising and scalable platform for high performance GaN-based optoelectronic, photonic, and quantum photonic devices.This research was supported by the UK Engineering and Physical Sciences Research Council Grants EP/J003603/1 and EP/M011682/1. The microscopy studies were supported by the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no 279361 (MACONS). Dr. T. Ding acknowledges the support from Leverhulme Early Career Fellowship (ECF-2016-606)
    corecore