26 research outputs found
Long-term in vivo imaging and measurement of dendritic shrinkage of retinal ganglion cells
PURPOSE. To monitor and measure dendritic shrinkage of retinal ganglion cells (RGCs) in a strain of transgenic mice (Thy-1 YFP) that expresses yellow fluorescent proteins in neurons under the control of a Thy-1 promoter. METHODS. A total of 125 RGCs from 16 eyes of Thy-1 YFP transgenic mice were serially imaged with a confocal scanning laser ophthalmoscope for 6 months after optic nerve crush. Quantitative analysis of cell body area, axon diameter, dendritic field, number of terminal branches, total dendritic branch length, branching complexity, symmetry, and distance from the optic disc was used to characterize the morphology of RGCs, describe the patterns of axonal and dendritic degeneration, identify the morphologic predictors for cell survival, and estimate the rate of dendritic shrinkage. RESULTS. RGC damage was observed prospectively to begin with progressive dendritic shrinkage, followed by loss of the axon and the cell body. In a small proportion of RGCs, progressive axonal changes including fragmentation, beading, retraction, and bulb formation were also observed. RGCs with a larger dendritic field and a longer total dendritic branch length in general have a better survival probability. The rate of dendritic shrinkage was variable with a slower rate observed in cells having a larger dendritic field, a longer total dendritic branch length, and a greater distance from the optic disc. CONCLUSIONS. Estimating the probability of RGC survival and measuring the rate of dendritic shrinkage could become a new paradigm for investigating neuronal degeneration and evaluating the response of neuroprotective treatment. © 2011 The Association for Research in Vision and Ophthalmology, Inc.postprin
Alzheimer's Disease: a Review of its Visual System Neuropathology. Optical Coherence Tomography-a Potential Role As a Study Tool in Vivo
Alzheimer's disease (AD) is a prevalent, long-term progressive degenerative disorder with great social impact. It is currently thought that, in addition to neurodegeneration, vascular changes also play a role in the pathophysiology of the disease. Visual symptoms are frequent and are an early clinical manifestation; a number of psychophysiologic changes occur in visual function, including visual field defects, abnormal contrast sensitivity, abnormalities in color vision, depth perception deficits, and motion detection abnormalities. These visual changes were initially believed to be solely due to neurodegeneration in the posterior visual pathway. However, evidence from pathology studies in both animal models of AD and humans has demonstrated that neurodegeneration also takes place in the anterior visual pathway, with involvement of the retinal ganglion cells' (RGCs) dendrites, somata, and axons in the optic nerve. These studies additionally showed that patients with AD have changes in retinal and choroidal microvasculature. Pathology findings have been corroborated in in-vivo assessment of the retina and optic nerve head (ONH), as well as the retinal and choroidal vasculature. Optical coherence tomography (OCT) in particular has shown great utility in the assessment of these changes, and it may become a useful tool for early detection and monitoring disease progression in AD. The authors make a review of the current understanding of retinal and choroidal pathological changes in patients with AD, with particular focus on in-vivo evidence of retinal and choroidal neurodegenerative and microvascular changes using OCT technology.info:eu-repo/semantics/publishedVersio
Diagnostic assessment of glaucoma and non-glaucomatous optic neuropathies via optical texture analysis of the retinal nerve fibre layer
The clinical diagnostic evaluation of optic neuropathies relies on the analysis of the thickness of the retinal nerve fibre layer (RNFL) by optical coherence tomography (OCT). However, false positives and false negatives in the detection of RNFL abnormalities are common. Here we show that an algorithm integrating measurements of RNFL thickness and reflectance from standard wide-field OCT scans can be used to uncover the trajectories and optical texture of individual axonal fibre bundles in the retina and to discern distinctive patterns of loss of axonal fibre bundles in glaucoma, compressive optic neuropathy, optic neuritis and non-arteritic anterior ischaemic optic neuropathy. Such optical texture analysis can detect focal RNFL defects in early optic neuropathy, as well as residual axonal fibre bundles in end-stage optic neuropathy that were indiscernible by conventional OCT analysis and by red-free RNFL photography. In a diagnostic-performance study, optical texture analysis of the RNFL outperformed conventional OCT in the detection of glaucoma, as defined by visual-field testing or red-free photography. Our findings show that optical texture analysis of the RNFL for the detection of optic neuropathies is highly sensitive and specific
The Unreasonable Effectiveness of Encoder-Decoder Networks for Retinal Vessel Segmentation
We propose an encoder-decoder framework for the segmentation of blood vessels
in retinal images that relies on the extraction of large-scale patches at
multiple image-scales during training. Experiments on three fundus image
datasets demonstrate that this approach achieves state-of-the-art results and
can be implemented using a simple and efficient fully-convolutional network
with a parameter count of less than 0.8M. Furthermore, we show that this
framework - called VLight - avoids overfitting to specific training images and
generalizes well across different datasets, which makes it highly suitable for
real-world applications where robustness, accuracy as well as low inference
time on high-resolution fundus images is required
Patterns of Retinal Damage Facilitate Differential Diagnosis between Susac Syndrome and MS
Susac syndrome, a rare but probably underdiagnosed combination of encephalopathy, hearing loss, and visual deficits due to branch retinal artery occlusion of unknown aetiology has to be considered as differential diagnosis in various conditions. Particularly, differentiation from multiple sclerosis is often challenging since both clinical presentation and diagnostic findings may overlap. Optical coherence tomography is a powerful and easy to perform diagnostic tool to analyse the morphological integrity of retinal structures and is increasingly established to depict characteristic patterns of retinal pathology in multiple sclerosis. Against this background we hypothesised that differential patterns of retinal pathology facilitate a reliable differentiation between Susac syndrome and multiple sclerosis. In this multicenter cross-sectional observational study optical coherence tomography was performed in nine patients with a definite diagnosis of Susac syndrome. Data were compared with age-, sex-, and disease duration-matched relapsing remitting multiple sclerosis patients with and without a history of optic neuritis, and with healthy controls. Using generalised estimating equation models, Susac patients showed a significant reduction in either or both retinal nerve fibre layer thickness and total macular volume in comparison to both healthy controls and relapsing remitting multiple sclerosis patients. However, in contrast to the multiple sclerosis patients this reduction was not distributed over the entire scanning area but showed a distinct sectorial loss especially in the macular measurements. We therefore conclude that patients with Susac syndrome show distinct abnormalities in optical coherence tomography in comparison to multiple sclerosis patients. These findings recommend optical coherence tomography as a promising tool for differentiating Susac syndrome from MS
Metabolic Changes in the Visual Cortex Are Linked to Retinal Nerve Fiber Layer Thinning in Multiple Sclerosis
OBJECTIVE: To investigate the damage to the retinal nerve fiber layer as part of the anterior visual pathway as well as an impairment of the neuronal and axonal integrity in the visual cortex as part of the posterior visual pathway with complementary neuroimaging techniques, and to correlate our results to patients' clinical symptoms concerning the visual pathway. DESIGN, SUBJECTS AND METHODS: Survey of 86 patients with relapsing-remitting multiple sclerosis that were subjected to retinal nerve fiber layer thickness (RNFLT) measurement by optical coherence tomography, to a routine MRI scan including the calculation of the brain parenchymal fraction (BPF), and to magnetic resonance spectroscopy at 3 tesla, quantifying N-acetyl aspartate (NAA) concentrations in the visual cortex and normal-appearing white matter. RESULTS: RNFLT correlated significantly with BPF and visual cortex NAA, but not with normal-appearing white matter NAA. This was connected with the patients' history of a previous optic neuritis. In a combined model, both BPF and visual cortex NAA were independently associated with RNFLT. CONCLUSIONS: Our data suggest the existence of functional pathway-specific damage patterns exceeding global neurodegeneration. They suggest a strong interrelationship between damage to the anterior and the posterior visual pathway
Correlation of Color Fundus Photograph Grading with Risks of Early Age-related Macular Degeneration by using Automated OCT-derived Drusen Measurements
We evaluated automated OCT-derived drusen volume measures in a population-based study (n = 4,512) aged ≥40 years, and its correlation with conventional color fundus photographs (CFP)-derived early AMD features. Participants had protocol-based assessment to capture medical and ocular history, genotyping for SNPs in CFH, ARMS2, and CETP, CFP-based AMD grading and automated drusen volume based on SD-OCT using built-in software (Cirrus OCT advanced RPE analysis software). Significantly fewer eyes with early AMD features (drusen, hyperpigmentation, soft or reticular drusen) had drusen volume = 0 mm3 (p 0 mm3, increasing AMD severity was associated with increase in drusen volume (correlation coefficient 0.17, p < 0.001). However 220 (59.14%) of 372 participants with AMD based on CFP grading had drusen volume = 0 mm3. Factors associated with drusen volume included age (OR 1.42 per 5 years, 95% confidence interval [CI] 2.76, 4.48), systolic blood pressure (OR1.00, 95% CI 1.00, 1.01), ethnic Malay (OR 1.54, 95% CI 1.29, 1.83) and Chinese (OR 1.66, 95% CI 1.37, 2.01) compared to Indian. The ARMS2 rs10490924 T allele was associated with increased drusen volume in subjects with AMD (multivariable adjusted OR1.54, 95% CI 1.08, 2.19). Automated OCT-derived drusen volume is correlated with CFP-based AMD grading in many, but not all subjects. However the agreement is not good. These two modalities provide complementary information and should be incorporated into future studies
