2,398 research outputs found

    Superconductivity of ultra-fine tungsten nanowires grown by focused-ion-beam direct-writing

    Get PDF
    The electrical properties of lateral ultra-fine tungsten nanowires, which were grown by focused-ion-beam-induced deposition with 1 pA ion-beam current, were investigated. Temperature-dependent electrical measurements show that the wires are conducting and have a superconducting transition with a transition temperature (T-c) about 5.1 K. Resistance vs. temperature measurements reveal that, with decreasing cross-sectional area, the wires display an increasingly broad superconducting transition. A residual resistive tail extending down to the low-temperature region is found only for the thinnest tungsten nanowire, which is 10 nm thick and 19 nm wide. The logarithm of the residual resistance of this wire appears as two linear sections as a function of temperature, one within 300 mK below T-c and the other extending down to the lowest measuring temperature of 4.26 K. Such features have previously been identified with phase slip processes. Our results are suggestive that the focused-ion-beam technique might be a potential approach to fabricate ultra-thin and ultra-narrow nanowires for the study of superconducting suppression in nanoscale materials and for maskless superconducting device fabrication. (C) 2011 Elsevier B.V. All rights reserved

    Interplay between topological insulators and superconductors

    Get PDF
    Topological insulators are insulating in the bulk but possess metallic surface states protected by time-reversal symmetry. Here, we report on a detailed electronic transport study in high-quality Bi 2Se 3 topological insulator thin films contacted by superconducting (In, Al, and W) electrodes. The resistance of the film shows an abrupt and significant upturn when the electrodes become superconducting. In turn, the Bi 2Se 3 film greatly weakens the superconductivity of the electrodes, significantly reducing both their transition temperatures and their critical fields. A possible interpretation of these results is that the superconducting electrodes are accessing the surface states and the experimental results are consequences of the interplay between the Cooper pairs of the electrodes and the spin-polarized current of the surface states in Bi 2Se 3. © 2012 American Physical Society.published_or_final_versio

    Light hadron, Charmonium(-like) and Bottomonium(-like) states

    Full text link
    Hadron physics represents the study of strongly interacting matter in all its manifestations and the understanding of its properties and interactions. The interest on this field has been revitalized by the discovery of new light hadrons, charmonium- and bottomonium-like states. I review the most recent experimental results from different experiments.Comment: Presented at Lepton-Photon 2011, Mumbai, India; 21 pages, 18 figures; add more references; some correctio

    Effects of quantum gravity on the inflationary parameters and thermodynamics of the early universe

    Full text link
    The effects of generalized uncertainty principle (GUP) on the inflationary dynamics and the thermodynamics of the early universe are studied. Using the GUP approach, the tensorial and scalar density fluctuations in the inflation era are evaluated and compared with the standard case. We find a good agreement with the Wilkinson Microwave Anisotropy Probe data. Assuming that a quantum gas of scalar particles is confined within a thin layer near the apparent horizon of the Friedmann-Lemaitre-Robertson-Walker universe which satisfies the boundary condition, the number and entropy densities and the free energy arising form the quantum states are calculated using the GUP approach. A qualitative estimation for effects of the quantum gravity on all these thermodynamic quantities is introduced.Comment: 15 graghes, 7 figures with 17 eps graph

    Intrinsic activity in the fly brain gates visual information during behavioral choices

    Get PDF
    The small insect brain is often described as an input/output system that executes reflex-like behaviors. It can also initiate neural activity and behaviors intrinsically, seen as spontaneous behaviors, different arousal states and sleep. However, less is known about how intrinsic activity in neural circuits affects sensory information processing in the insect brain and variability in behavior. Here, by simultaneously monitoring Drosophila's behavioral choices and brain activity in a flight simulator system, we identify intrinsic activity that is associated with the act of selecting between visual stimuli. We recorded neural output (multiunit action potentials and local field potentials) in the left and right optic lobes of a tethered flying Drosophila, while its attempts to follow visual motion (yaw torque) were measured by a torque meter. We show that when facing competing motion stimuli on its left and right, Drosophila typically generate large torque responses that flip from side to side. The delayed onset (0.1-1 s) and spontaneous switch-like dynamics of these responses, and the fact that the flies sometimes oppose the stimuli by flying straight, make this behavior different from the classic steering reflexes. Drosophila, thus, seem to choose one stimulus at a time and attempt to rotate toward its direction. With this behavior, the neural output of the optic lobes alternates; being augmented on the side chosen for body rotation and suppressed on the opposite side, even though the visual input to the fly eyes stays the same. Thus, the flow of information from the fly eyes is gated intrinsically. Such modulation can be noise-induced or intentional; with one possibility being that the fly brain highlights chosen information while ignoring the irrelevant, similar to what we know to occur in higher animals

    Superconductivity in HfTe5 across weak to strong topological insulator transition induced via pressures

    Get PDF
    Recently, theoretical studies show that layered HfTe5 is at the boundary of weak & strong topological insulator (TI) and might crossover to a Dirac semimetal state by changing lattice parameters. The topological properties of 3D stacked HfTe5 are expected hence to be sensitive to pressures tuning. Here, we report pressure induced phase evolution in both electronic & crystal structures for HfTe5 with a culmination of pressure induced superconductivity. Our experiments indicated that the temperature for anomaly resistance peak (Tp) due to Lifshitz transition decreases first before climbs up to a maximum with pressure while the Tp minimum corresponds to the transition from a weak TI to strong TI. The HfTe5 crystal becomes superconductive above ~5.5 GPa where the Tp reaches maximum. The highest superconducting transition temperature (Tc) around 5 K was achieved at 20 GPa. Crystal structure studies indicate that HfTe5 transforms from a Cmcm phase across a monoclinic C2/m phase then to a P-1 phase with increasing pressure. Based on transport, structure studies a comprehensive phase diagram of HfTe5 is constructed as function of pressure. The work provides valuable experimental insights into the evolution on how to proceed from a weak TI precursor across a strong TI to superconductors

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Baicalin administration attenuates hyperglycemia-induced malformation of cardiovascular system

    Get PDF
    In this study, the effects of Baicalin on the hyperglycemia-induced cardiovascular malformation during embryo development were investigated. Using early chick embryos, an optimal concentration of Baicalin (6 μM), was identified which could prevent hyperglycemia-induced cardiovascular malformation of embryos. Hyperglycemia-enhanced cell apoptosis was reduced in embryos and HUVECs in the presence of Baicalin. Hyperglycemia-induced excessive ROS production was inhibited when Baicalin was administered. Analyses of SOD, GSH-Px, MAQE and GABAA suggested Baicalin plays an antioxidant role in chick embryos possibly through suppression of outwardly rectifying Cl(-) in the high-glucose microenvironment. In addition, hyperglycemia-enhanced autophagy fell in the presence of Baicalin, through affecting the ubiquitin of p62 and accelerating autophagy flux. Both Baicalin and Vitamin C could decrease apoptosis, but CQ did not, suggesting autophagy to be a protective function on the cell survival. In mice, Baicalin reduced the elevated blood glucose level caused by streptozotocin (STZ). Taken together, these data suggest that hyperglycemia-induced embryonic cardiovascular malformation can be attenuated by Baicalin administration through suppressing the excessive production of ROS and autophagy. Baicalin could be a potential candidate drug for women suffering from gestational diabetes mellitus

    Experimental studies of e + e -→ some charmless processes containing K S0 at √s = 3.773 and 3.65 GeV

    Get PDF
    We measure the observed cross sections for the charmless processes e + e -→K S0 K - K - K + π ++ c.c., K S0 K - π + η+c.c., K S0 K - π + π + π - η+c.c., K S0 K - K - K + π + η+c.c., K S0 K - K - K + π + π 0+c.c., K S0 K - ρ ++c.c. and K S0 K - π + ρ 0+c.c. We also extract upper limits on the branching fractions for ψ(3770) decays into these final states at 90% C.L. Analyzed data samples correspond to 17.3 pb-1 and 6.5 pb-1 integrated luminosities registered, respectively, at √s = 3.773 and 3.65 GeV, with the BES-II detector at the BEPC collider. © 2009 Springer-Verlag / Società Italiana di Fisica.published_or_final_versionSpringer Open Choice, 21 Feb 201

    Revealing microstructural evolutions, mechanical properties and wear performance of wire arc additive manufacturing homogeneous and heterogeneous NiTi alloy

    Get PDF
    Heterogeneous microstructure designs have attracted a great deal of attention, not only because they have the potential to achieve an ideal combination of two conflicting properties, but also because the processes involved in their fabrication are cost-effective and can be scaled up for industrial production. The process parameters in the preparation process have an important effect on the microstructure and properties of alloy members prepared by wire arc additive manufacturing (WAAM) technology. It was expected that the spatial heterogeneous microstructure with large microstructural heterogeneities in metals can be formed through changing the process parameters. In this work, homogeneous NiTi thin-walled component and heterogeneous NiTi thin-walled component were fabricated using WAAM technology by adjusting the heat input. The effects of deposition height and heat input on the microstructure, mechanical properties and wear properties of WAAM NiTi alloys were investigated. The results show that grains were gradually refined with the increase of deposition height in the homogeneous WAAM NiTi component. The ultimate tensile strength of homogeneous WAAM NiTi component increased from 606.87 MPa to 654.45 MPa and the elongation increased from 12.72% to 15.38%, as the increase of deposition height. Moreover, the homogeneous WAAM NiTi component exhibited excellent wear resistance, the coefficient of friction decreased from 0.760 to 0.715 with the increase of deposition height. Meanwhile, the grains in the heterogeneous WAAM NiTi component shows the finest grains in the central region. The ultimate tensile strength of the lower region, middle region and upper region of heterogeneous WAAM NiTi components were 556.12 MPa, 599.53 MPa and 739.79 MPa, and the elongations were 12.98%, 16.69%, 21.74%, respectively. The coefficient of friction for the lower region, middle region and upper region of heterogeneous WAAM NiTi components were 0.713, 0.720 and 0.710, respectively. The microhardness and cyclic compression properties of the homogeneous components with higher heat input were better than those of the heterogeneous components for the same deposition height. The tensile yield strength, elongation and wear resistance of the heterogeneous components were superior compared to the homogeneous components. These results can be used to optimize the WAAM process parameters to prepare NiTi components with excellent mechanical properties
    corecore