10 research outputs found

    Enhanced 99Tc retention in glass waste form using Tc(IV)-incorporated Fe minerals

    Get PDF
    Technetium (99Tc) immobilization by doping into iron oxide mineral phases may alleviate the problems with Tc volatility during vitrification of nuclear waste. Because reduced Tc, Tc(IV), substitutes for Fe(III) in the crystal structure by a process of Tc reduction from Tc(VII) to Tc(IV) followed by co-precipitation of Fe oxide minerals, two Tc-incorporated Fe minerals (Tc-goethite and Tc-magnetite/maghemite) were prepared and tested for Tc retention in glass melt samples at temperatures between 600 and 1000 °C. After being cooled, the solid glass specimens prepared at different temperatures at 600, 800, and 1000 °C were analyzed for Tc oxidation state using Tc K-edge XANES. In most samples, Tc was partially (<60%) oxidized from Tc(IV) to Tc(VII) as the melt temperature increased up to 600 °C. However, most of Tc(IV) was completely (>95%) oxidized to Tc(VII) at temperature above 800 °C. Tc retention in glass melt samples prepared using Tc-incorporated Fe minerals were slightly higher (∼10%) than in glass prepared using KTcO4 because of limited and delayed Tc volatilization

    The Nature of the Volatile Technetium Species Formed During Vitrification of Borosilicate Glass

    Full text link
    Vitrification of sodium pertechnetate into borosilicate glass was performed in air at 1100 °C. A glass with a composition similar to the one developed for vitrification of the low activity waste at the Hanford site was used. A red volatile species was observed above 600 °C. The extended X-ray absorption fine structure results indicate the environment of the absorbing Tc atom consists of 2.9(6) O atoms at 1.73(2) Å, 2.2(4) O atoms at 2.02(2) Å, and 0.8(2) O atoms at 2.18(2) Å. The results are consistent with the presence of a mononuclear species with a structure closely related to TcO3(OH)(H2O)2
    corecore