146 research outputs found
The effect of coating architecture and defects on the corrosion behaviour of a PVD multilayer Inconel 625/Cr coating
This paper investigates the effect of substrate surface finish and deposition conditions of PVD multilayer Inconel 625/Cr coatings on their ability to act as a corrosion-barrier. The corrosion-barrier performance of the coatings was characterized by potentiodynamic testing and salt-spray testing followed by image analysis of the exposed surface; further coating properties were investigated through XRD, SEM, EDX and scratch testing. The results show that multilayering produced the expected improvement in scratch resistance however it did not affect corrosion behaviour. Interrupting the deposition process did not decrease the defect density. Defect density was observed to reduce with decreasing substrate surface finish. The corrosion barrier performance of the multilayer Inconel 625/Cr coating (bp100 nm) was greatly improved for coatings deposited on a polished substrate. For the multilayer Inconel 625/Cr coating system used in this work multilayering and process interruption did not prevent defects from limiting the corrosion barrier effectiveness of the coatings. Corrosion barrier performance was successfully enhanced by the use of low roughness substrates to minimise the defect density
Recommended from our members
Intensifying chitin hydrolysis by adjunct treatments – an overview
Chitin is, after cellulose, the most abundant organic natural polysaccharide on Earth, being synthesized as a dominant component in the exoskeletons of crustaceans, among other sources. In the processing of seafood for human consumption, between 40 and 50% of the total raw material mass is wasted, causing a significant problem for the environment due to its slow degradation. Efforts to find uses for chitin derivatives, particularly their oligomers, have intensified since these chemicals are highly functional and offer a wide range of applications, especially as antimicrobial agent. As a consequence, some adjunct treatments, either chemical or physical in nature, have been employed to assist acid and enzymatic hydrolysis. This work provides a detailed review of the methods employed to intensify the formation of chitin oligomers, particularly focusing on the adjunct treatments used (microwave, ultrasonication, steam explosion and gamma irradiation), and evaluate the yield and characteristics of the oligomers formed. Adjunct treatments are more suitable for enzymatic hydrolysis since these treatments modify the chitin structure, and enhance the hydrolysis rate and yield of the oligomers, under milder reaction conditions. For future research, it would be worth trying pre-treatments like the application of high-pressure to chitin in order to lower its crystallinity
Comparison of structural, electronic and magnetic properties in nickel-doped graphene containing different pyridinic-N coordination
Recently, single-atom catalysts (SAC) have shown to be an alternative to enable chemical reactions related to the generation of renewable energy and to control environmental pollution. These SACs can be synthesized by modifying the structure of a substrate such as graphene through doping with single transition metal atoms. One of the possible ways to improve its catalytic properties is to modify the coordination of the metal atom with pyridinic-N sites. Thus, understanding the properties of the material when the coordination is modified is crucial for potential applications. In the present work, the electronic, structural and magnetic properties of a graphene sheet doped with a nickel atom were studied by computational simulation using DFT. These properties were inspected by changing the coordination of the nickel atom with pyridinic-N sites. A
eV gap is found when graphene is doped with the nickel atom and it is maintained with the modification of the coordination, except for the substrate with three nitrogen atoms. A change in the chemical nature of the bond between the Ni atom and its neighbours from a pi to a sigma type is also revealed
Can the intake of antiparasitic secondary metabolites explain the low prevalence of hemoparasites among wild Psittaciformes?
Background: Parasites can exert selection pressure on their hosts through effects on survival, on reproductive success, on sexually selected ornament, with important ecological and evolutionary consequences, such as changes in population viability. Consequently, hemoparasites have become the focus of recent avian studies. Infection varies significantly among taxa. Various factors might explain the differences in infection among taxa, including habitat, climate, host density, the presence of vectors, life history and immune defence. Feeding behaviour can also be relevant both through increased exposure to vectors and consumption of secondary metabolites with preventative or therapeutic effects that can reduce parasite load. However, the latter has been little investigated. Psittaciformes (parrots and cockatoos) are a good model to investigate these topics, as they are known to use biological control against ectoparasites and to feed on toxic food. We investigated the presence of avian malaria parasites (Plasmodium), intracellular haemosporidians (Haemoproteus, Leucocytozoon), unicellular flagellate protozoans (Trypanosoma) and microfilariae in 19 Psittaciformes species from a range of habitats in the Indo-Malayan, Australasian and Neotropical regions. We gathered additional data on hemoparasites in wild Psittaciformes from the literature. We considered factors that may control the presence of hemoparasites in the Psittaciformes, compiling information on diet, habitat, and climate. Furthermore, we investigated the role of diet in providing antiparasitic secondary metabolites that could be used as self-medication to reduce parasite load.
Results: We found hemoparasites in only two of 19 species sampled. Among them, all species that consume at least one food item known for its secondary metabolites with antimalarial, trypanocidal or general antiparasitic properties, were free from hemoparasites. In contrast, the infected parrots do not consume food items with antimalarial or even general antiparasitic properties. We found that the two infected species in this study consumed omnivorous diets. When we combined our data with data from studies previously investigating blood parasites in wild parrots, the positive relationship between omnivorous diets and hemoparasite infestation was confirmed. Individuals from open habitats were less infected than those from forests.
Conclusions: The consumption of food items known for their secondary metabolites with antimalarial, trypanocidal or general antiparasitic properties, as well as the higher proportion of infected species among omnivorous parrots, could explain the low prevalence of hemoparasites reported in many vertebrates
Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants
BACKGROUND: One of the global targets for non-communicable diseases is to halt, by 2025, the rise in the age-standardised adult prevalence of diabetes at its 2010 levels. We aimed to estimate worldwide trends in diabetes, how likely it is for countries to achieve the global target, and how changes in prevalence, together with population growth and ageing, are affecting the number of adults with diabetes. METHODS: We pooled data from population-based studies that had collected data on diabetes through measurement of its biomarkers. We used a Bayesian hierarchical model to estimate trends in diabetes prevalence—defined as fasting plasma glucose of 7·0 mmol/L or higher, or history of diagnosis with diabetes, or use of insulin or oral hypoglycaemic drugs—in 200 countries and territories in 21 regions, by sex and from 1980 to 2014. We also calculated the posterior probability of meeting the global diabetes target if post-2000 trends continue. FINDINGS: We used data from 751 studies including 4 372 000 adults from 146 of the 200 countries we make estimates for. Global age-standardised diabetes prevalence increased from 4·3% (95% credible interval 2·4–7·0) in 1980 to 9·0% (7·2–11·1) in 2014 in men, and from 5·0% (2·9–7·9) to 7·9% (6·4–9·7) in women. The number of adults with diabetes in the world increased from 108 million in 1980 to 422 million in 2014 (28·5% due to the rise in prevalence, 39·7% due to population growth and ageing, and 31·8% due to interaction of these two factors). Age-standardised adult diabetes prevalence in 2014 was lowest in northwestern Europe, and highest in Polynesia and Micronesia, at nearly 25%, followed by Melanesia and the Middle East and north Africa. Between 1980 and 2014 there was little change in age-standardised diabetes prevalence in adult women in continental western Europe, although crude prevalence rose because of ageing of the population. By contrast, age-standardised adult prevalence rose by 15 percentage points in men and women in Polynesia and Micronesia. In 2014, American Samoa had the highest national prevalence of diabetes (>30% in both sexes), with age-standardised adult prevalence also higher than 25% in some other islands in Polynesia and Micronesia. If post-2000 trends continue, the probability of meeting the global target of halting the rise in the prevalence of diabetes by 2025 at the 2010 level worldwide is lower than 1% for men and is 1% for women. Only nine countries for men and 29 countries for women, mostly in western Europe, have a 50% or higher probability of meeting the global target. INTERPRETATION: Since 1980, age-standardised diabetes prevalence in adults has increased, or at best remained unchanged, in every country. Together with population growth and ageing, this rise has led to a near quadrupling of the number of adults with diabetes worldwide. The burden of diabetes, both in terms of prevalence and number of adults affected, has increased faster in low-income and middle-income countries than in high-income countries. FUNDING: Wellcome Trust
Search for new physics with dijet angular distributions in proton-proton collisions at root S = 13 TeV
Peer reviewe
Recommended from our members
Characterization of steel billet scales generated during the continuous casting process in SIDERPERU steel plant
AbstractTons of waste is produced during iron steel’s industrial production, creating environmental pollution. This work aims to characterize the steel scale formed on the billet surface during the last step of steel production in the SIDERPERU steel plant. Scanning Electron Microscopy (SEM) shows stacked layers one above the other on steel billets scales surface. Energy Dispersive X-ray (EDX) and X-ray Fluorescence (XRF) reveal the high content of Fe and O, with Ca, Si, Mn, and Cr as minority elemental compounds. X-ray Diffraction (XRD) shows FeO, α-Fe2O3 and Fe3O4 as crystallographic phases. Magnetometry reveals Verwey transition and paramagnetic signals that screen the Morin transition. Mössbauer Spectroscopy at room temperature displays magnetic and non-magnetic parts. The non-magnetic part has the hyperfine parameters corresponding to predominant nonstoichiometric wustite. Octahedral (Fe+2/Fe3+) and tetrahedral Fe+3 hyperfine fields of 46.0 and 49.4 T values respectively are associated to nonstoichiometric magnetite and another sextet with a hyperfine field of 52.0 T is related to hematite.</jats:p
Recommended from our members
Characterization of steel billet scales generated during the continuous casting process in SIDERPERU steel plant
AbstractTons of waste is produced during iron steel’s industrial production, creating environmental pollution. This work aims to characterize the steel scale formed on the billet surface during the last step of steel production in the SIDERPERU steel plant. Scanning Electron Microscopy (SEM) shows stacked layers one above the other on steel billets scales surface. Energy Dispersive X-ray (EDX) and X-ray Fluorescence (XRF) reveal the high content of Fe and O, with Ca, Si, Mn, and Cr as minority elemental compounds. X-ray Diffraction (XRD) shows FeO, α-Fe2O3 and Fe3O4 as crystallographic phases. Magnetometry reveals Verwey transition and paramagnetic signals that screen the Morin transition. Mössbauer Spectroscopy at room temperature displays magnetic and non-magnetic parts. The non-magnetic part has the hyperfine parameters corresponding to predominant nonstoichiometric wustite. Octahedral (Fe+2/Fe3+) and tetrahedral Fe+3 hyperfine fields of 46.0 and 49.4 T values respectively are associated to nonstoichiometric magnetite and another sextet with a hyperfine field of 52.0 T is related to hematite.</jats:p
Isolation and characterization of the TIGA genes, whose transcripts are induced by growth arrest
We report here the isolation of 44 genes that are upregulated after serum starvation and/or contact inhibition. These genes have been termed TIGA, after Transcript Induced by Growth Arrest. We found that there are two kinds of G0 phases caused by serum starvation, namely, the shallow G0 (or G0/G1) and the deep G0 phases. The shallow G0 is induced by only a few hours of serum starvation, while deep G0 is generated after 3 days of serum starvation. We propose that mammalian cells enter deep G0 through a G0 gate, which is only opened on the third day of serum starvation. TIGA1, one of the uncharacterized TIGA genes, encodes a homolog of cyanate permease of bacteria and localizes in mitochondria. This suggests that Tiga1 is involved in the inorganic ion transport and metabolism needed to maintain the deep G0 phase. Ectopic expression of TIGA1 inhibited not only tumor cell proliferation but also anchorage-independent growth of cancer cell lines. A microsatellite marker, ENDL-1, allowed us to detect loss of heterozygosity around the TIGA1 gene region (5q21–22). Further analysis of the TIGA genes we have identified here may help us to better understand the mechanisms that regulate the G0 phase
Chitosan in Plant Protection
Chitin and chitosan are naturally-occurring compounds that have potential in agriculture with regard to controlling plant diseases. These molecules were shown to display toxicity and inhibit fungal growth and development. They were reported to be active against viruses, bacteria and other pests. Fragments from chitin and chitosan are known to have eliciting activities leading to a variety of defense responses in host plants in response to microbial infections, including the accumulation of phytoalexins, pathogen-related (PR) proteins and proteinase inhibitors, lignin synthesis, and callose formation. Based on these and other proprieties that help strengthen host plant defenses, interest has been growing in using them in agricultural systems to reduce the negative impact of diseases on yield and quality of crops. This review recapitulates the properties and uses of chitin, chitosan, and their derivatives, and will focus on their applications and mechanisms of action during plant-pathogen interactions
- …
