2,029 research outputs found

    Nontrivial edge coupling from a Dirichlet network squeezing: the case of a bent waveguide

    Full text link
    In distinction to the Neumann case the squeezing limit of a Dirichlet network leads in the threshold region generically to a quantum graph with disconnected edges, exceptions may come from threshold resonances. Our main point in this paper is to show that modifying locally the geometry we can achieve in the limit a nontrivial coupling between the edges including, in particular, the class of δ\delta-type boundary conditions. We work out an illustration of this claim in the simplest case when a bent waveguide is squeezed.Comment: LaTeX, 16 page

    Graph-like asymptotics for the Dirichlet Laplacian in connected tubular domains

    Full text link
    We consider the Dirichlet Laplacian in a waveguide of uniform width and infinite length which is ideally divided into three parts: a "vertex region", compactly supported and with non zero curvature, and two "edge regions" which are semi-infinite straight strips. We make the waveguide collapse onto a graph by squeezing the edge regions to half-lines and the vertex region to a point. In a setting in which the ratio between the width of the waveguide and the longitudinal extension of the vertex region goes to zero, we prove the convergence of the operator to a selfadjoint realization of the Laplacian on a two edged graph. In the limit operator, the boundary conditions in the vertex depend on the spectral properties of an effective one dimensional Hamiltonian associated to the vertex region.Comment: Major revision. Reviewed introduction. Changes in Th. 1, Th. 2, and Th. 3. Updated references. 23 page

    Relative partition function of Coulomb plus delta interaction

    Full text link
    The relative partition function and the relative zeta function of the perturbation of the Laplace operator by a Coulomb potential plus a point interaction centered in the origin is discussed. Applications to the study of the Casimir effect are indicated.Comment: Minor misprints corrected. 24 page

    Effective equation for a system of mechanical oscillators in an acoustic field

    Full text link
    We consider a one dimensional evolution problem modeling the dynamics of an acoustic field coupled with a set of mechanical oscillators. We analyze solutions of the system of ordinary and partial differential equations with time-dependent boundary conditions describing the evolution in the limit of a continuous distribution of oscillators.Comment: Improved Theorem 2. Updated introduction and references. Added 1 figure. 11 page

    Time dependent delta-prime interactions in dimension one

    Full text link
    We solve the Cauchy problem for the Schr\"odinger equation corresponding to the family of Hamiltonians Hγ(t)H_{\gamma(t)} in L2(R)L^{2}(\mathbb{R}) which describes a δ\delta'-interaction with time-dependent strength 1/γ(t)1/\gamma(t). We prove that the strong solution of such a Cauchy problem exits whenever the map tγ(t)t\mapsto\gamma(t) belongs to the fractional Sobolev space H3/4(R)H^{3/4}(\mathbb{R}), thus weakening the hypotheses which would be required by the known general abstract results. The solution is expressed in terms of the free evolution and the solution of a Volterra integral equation.Comment: minor changes, 10 page

    The NLS equation in dimension one with spatially concentrated nonlinearities: the pointlike limit

    Full text link
    In the present paper we study the following scaled nonlinear Schr\"odinger equation (NLS) in one space dimension: iddtψε(t)=Δψε(t)+1ϵV(xϵ)ψε(t)2μψε(t)ϵ>0 ,VL1(R,(1+x)dx)L(R) . i\frac{d}{dt} \psi^{\varepsilon}(t) =-\Delta\psi^{\varepsilon}(t) + \frac{1}{\epsilon}V\left(\frac{x}{\epsilon}\right)|\psi^{\varepsilon}(t)|^{2\mu}\psi^{\varepsilon}(t) \quad \quad \epsilon>0\ ,\quad V\in L^1(\mathbb{R},(1+|x|)dx) \cap L^\infty(\mathbb{R}) \ . This equation represents a nonlinear Schr\"odinger equation with a spatially concentrated nonlinearity. We show that in the limit ϵ0\epsilon\to 0, the weak (integral) dynamics converges in H1(R)H^1(\mathbb{R}) to the weak dynamics of the NLS with point-concentrated nonlinearity: iddtψ(t)=Hαψ(t). i\frac{d}{dt} \psi(t) =H_{\alpha}\psi(t) . where HαH_{\alpha} is the laplacian with the nonlinear boundary condition at the origin ψ(t,0+)ψ(t,0)=αψ(t,0)2μψ(t,0)\psi'(t,0+)-\psi'(t,0-)=\alpha|\psi(t,0)|^{2\mu}\psi(t,0) and α=RVdx\alpha=\int_{\mathbb{R}}Vdx. The convergence occurs for every μR+\mu\in \mathbb{R}^+ if V0V \geq 0 and for every μ(0,1)\mu\in (0,1) otherwise. The same result holds true for a nonlinearity with an arbitrary number NN of concentration pointsComment: 10 page

    Towards a Distributed Quantum Computing Ecosystem

    Full text link
    The Quantum Internet, by enabling quantum communications among remote quantum nodes, is a network capable of supporting functionalities with no direct counterpart in the classical world. Indeed, with the network and communications functionalities provided by the Quantum Internet, remote quantum devices can communicate and cooperate for solving challenging computational tasks by adopting a distributed computing approach. The aim of this paper is to provide the reader with an overview about the main challenges and open problems arising with the design of a Distributed Quantum Computing ecosystem. For this, we provide a survey, following a bottom-up approach, from a communications engineering perspective. We start by introducing the Quantum Internet as the fundamental underlying infrastructure of the Distributed Quantum Computing ecosystem. Then we go further, by elaborating on a high-level system abstraction of the Distributed Quantum Computing ecosystem. Such an abstraction is described through a set of logical layers. Thereby, we clarify dependencies among the aforementioned layers and, at the same time, a road-map emerges

    Stationary States of NLS on Star Graphs

    Full text link
    We consider a generalized nonlinear Schr\"odinger equation (NLS) with a power nonlinearity |\psi|^2\mu\psi, of focusing type, describing propagation on the ramified structure given by N edges connected at a vertex (a star graph). To model the interaction at the junction, it is there imposed a boundary condition analogous to the \delta potential of strength \alpha on the line, including as a special case (\alpha=0) the free propagation. We show that nonlinear stationary states describing solitons sitting at the vertex exist both for attractive (\alpha0, a potential barrier) interaction. In the case of sufficiently strong attractive interaction at the vertex and power nonlinearity \mu<2, including the standard cubic case, we characterize the ground state as minimizer of a constrained action and we discuss its orbital stability. Finally we show that in the free case, for even N only, the stationary states can be used to construct traveling waves on the graph.Comment: Revised version, 5 pages, 2 figure
    corecore