821 research outputs found
Determination of the Newtonian Gravitational Constant Using Atom Interferometry
We present a new measurement of the Newtonian gravitational constant G based
on cold atom interferometry. Freely falling samples of laser-cooled rubidium
atoms are used in a gravity gradiometer to probe the field generated by nearby
source masses. In addition to its potential sensitivity, this method is
intriguing as gravity is explored by a quantum system. We report a value of
G=6.667 10^{-11} m^{3} kg^{-1} s^{-2}, estimating a statistical uncertainty of
0.011 10^{-11} m^{3} kg^{-1} s^{-2} and a systematic uncertainty of
0.003 10^{-11} m^{3} kg^{-1} s^{-2}. The long-term stability of the instrument
and the signal-to-noise ratio demonstrated here open interesting perspectives
for pushing the measurement accuracy below the 100 ppm level.Comment: 4 figure
Measurement of the Gravity-Field Curvature by Atom Interferometry
We present the first direct measurement of the gravity-field curvature based
on three conjugated atom interferometers. Three atomic clouds launched in the
vertical direction are simultaneously interrogated by the same atom
interferometry sequence and used to probe the gravity field at three equally
spaced positions. The vertical component of the gravity-field curvature
generated by nearby source masses is measured from the difference between
adjacent gravity gradient values. Curvature measurements are of interest in
geodesy studies and for the validation of gravitational models of the
surrounding environment. The possibility of using such a scheme for a new
determination of the Newtonian constant of gravity is also discussed.Comment: 5 pages, 3 figure
Point interactions in acoustics: one dimensional models
A one dimensional system made up of a compressible fluid and several
mechanical oscillators, coupled to the acoustic field in the fluid, is analyzed
for different settings of the oscillators array. The dynamical models are
formulated in terms of singular perturbations of the decoupled dynamics of the
acoustic field and the mechanical oscillators. Detailed spectral properties of
the generators of the dynamics are given for each model we consider. In the
case of a periodic array of mechanical oscillators it is shown that the energy
spectrum presents a band structure.Comment: revised version, 30 pages, 2 figure
Quantum test of the equivalence principle for atoms in superpositions of internal energy eigenstates
The Einstein Equivalence Principle (EEP) has a central role in the
understanding of gravity and space-time. In its weak form, or Weak Equivalence
Principle (WEP), it directly implies equivalence between inertial and
gravitational mass. Verifying this principle in a regime where the relevant
properties of the test body must be described by quantum theory has profound
implications. Here we report on a novel WEP test for atoms. A Bragg atom
interferometer in a gravity gradiometer configuration compares the free fall of
rubidium atoms prepared in two hyperfine states and in their coherent
superposition. The use of the superposition state allows testing genuine
quantum aspects of EEP with no classical analogue, which have remained
completely unexplored so far. In addition, we measure the Eotvos ratio of atoms
in two hyperfine levels with relative uncertainty in the low ,
improving previous results by almost two orders of magnitude.Comment: Accepted for publication in Nature Communicatio
Dynamics of F=2 Spinor Bose-Einstein Condensates
We experimentally investigate and analyze the rich dynamics in F=2 spinor
Bose-Einstein condensates of Rb87. An interplay between mean-field driven spin
dynamics and hyperfine-changing losses in addition to interactions with the
thermal component is observed. In particular we measure conversion rates in the
range of 10^-12 cm^3/s for spin changing collisions within the F=2 manifold and
spin-dependent loss rates in the range of 10^-13 cm^3/s for hyperfine-changing
collisions. From our data we observe a polar behavior in the F=2 ground state
of Rb87, while we measure the F=1 ground state to be ferromagnetic. Furthermore
we see a magnetization for condensates prepared with non-zero total spin.Comment: 4 pages, 2 figures, RevTe
Sensitivity limits of a Raman atom interferometer as a gravity gradiometer
We evaluate the sensitivity of a dual cloud atom interferometer to the
measurement of vertical gravity gradient. We study the influence of most
relevant experimental parameters on noise and long-term drifts. Results are
also applied to the case of doubly differential measurements of the
gravitational signal from local source masses. We achieve a short term
sensitivity of 3*10^(-9) g/Hz^(-1/2) to differential gravity acceleration,
limited by the quantum projection noise of the instrument. Active control of
the most critical parameters allows to reach a resolution of 5*10^(-11) g after
8000 s on the measurement of differential gravity acceleration. The long term
stability is compatible with a measurement of the gravitational constant G at
the level of 10^(-4) after an integration time of about 100 hours.Comment: 19 pages, 20 figure
Second Order Correlation Function of a Phase Fluctuating Bose-Einstein Condensate
The coherence properties of phase fluctuating Bose-Einstein condensates are
studied both theoretically and experimentally. We derive a general expression
for the N-particle correlation function of a condensed Bose gas in a highly
elongated trapping potential. The second order correlation function is analyzed
in detail and an interferometric method to directly measure it is discussed and
experimentally implemented. Using a Bragg diffraction interferometer, we
measure intensity correlations in the interference pattern generated by two
spatially displaced copies of a parent condensate. Our experiment demonstrates
how to characterize the second order correlation function of a highly elongated
condensate and to measure its phase coherence length.Comment: 22 pages, 5 figure
- …
