280 research outputs found
Fast and secure key distribution using mesoscopic coherent states of light
This work shows how two parties A and B can securely share sequences of
random bits at optical speeds. A and B possess true-random physical sources and
exchange random bits by using a random sequence received to cipher the
following one to be sent. A starting shared secret key is used and the method
can be described as an unlimited one-time-pad extender. It is demonstrated that
the minimum probability of error in signal determination by the eavesdropper
can be set arbitrarily close to the pure guessing level. Being based on the
-ry encryption protocol this method also allows for optical amplification
without security degradation, offering practical advantages over the BB84
protocol for key distribution.Comment: 11 pages and 4 figures. This version updates the one published in PRA
68, 052307 (2003). Minor changes were made in the text and one section on
Mutual Information was adde
Private Outsourcing of Polynomial Evaluation and Matrix Multiplication using Multilinear Maps
{\em Verifiable computation} (VC) allows a computationally weak client to
outsource the evaluation of a function on many inputs to a powerful but
untrusted server. The client invests a large amount of off-line computation and
gives an encoding of its function to the server. The server returns both an
evaluation of the function on the client's input and a proof such that the
client can verify the evaluation using substantially less effort than doing the
evaluation on its own. We consider how to privately outsource computations
using {\em privacy preserving} VC schemes whose executions reveal no
information on the client's input or function to the server. We construct VC
schemes with {\em input privacy} for univariate polynomial evaluation and
matrix multiplication and then extend them such that the {\em function privacy}
is also achieved. Our tool is the recently developed {mutilinear maps}. The
proposed VC schemes can be used in outsourcing {private information retrieval
(PIR)}.Comment: 23 pages, A preliminary version appears in the 12th International
Conference on Cryptology and Network Security (CANS 2013
Quantum cryptography with 3-state systems
We consider quantum cryptographic schemes where the carriers of information
are 3-state particles. One protocol uses four mutually unbiased bases and
appears to provide better security than obtainable with 2-state carriers.
Another possible method allows quantum states to belong to more than one basis.
The security is not better, but many curious features arise.Comment: 11 pages Revte
Estimates for practical quantum cryptography
In this article I present a protocol for quantum cryptography which is secure
against attacks on individual signals. It is based on the Bennett-Brassard
protocol of 1984 (BB84). The security proof is complete as far as the use of
single photons as signal states is concerned. Emphasis is given to the
practicability of the resulting protocol. For each run of the quantum key
distribution the security statement gives the probability of a successful key
generation and the probability for an eavesdropper's knowledge, measured as
change in Shannon entropy, to be below a specified maximal value.Comment: Authentication scheme corrected. Other improvements of presentatio
Possibility, Impossibility and Cheat-Sensitivity of Quantum Bit String Commitment
Unconditionally secure non-relativistic bit commitment is known to be
impossible in both the classical and the quantum worlds. But when committing to
a string of n bits at once, how far can we stretch the quantum limits? In this
paper, we introduce a framework for quantum schemes where Alice commits a
string of n bits to Bob in such a way that she can only cheat on a bits and Bob
can learn at most b bits of information before the reveal phase. Our results
are two-fold: we show by an explicit construction that in the traditional
approach, where the reveal and guess probabilities form the security criteria,
no good schemes can exist: a+b is at least n. If, however, we use a more
liberal criterion of security, the accessible information, we construct schemes
where a=4log n+O(1) and b=4, which is impossible classically. We furthermore
present a cheat-sensitive quantum bit string commitment protocol for which we
give an explicit tradeoff between Bob's ability to gain information about the
committed string, and the probability of him being detected cheating.Comment: 10 pages, RevTex, 2 figure. v2: title change, cheat-sensitivity adde
Ensuring message embedding in wet paper steganography
International audienceSyndrome coding has been proposed by Crandall in 1998 as a method to stealthily embed a message in a cover-medium through the use of bounded decoding. In 2005, Fridrich et al. introduced wet paper codes to improve the undetectability of the embedding by nabling the sender to lock some components of the cover-data, according to the nature of the cover-medium and the message. Unfortunately, almost all existing methods solving the bounded decoding syndrome problem with or without locked components have a non-zero probability to fail. In this paper, we introduce a randomized syndrome coding, which guarantees the embedding success with probability one. We analyze the parameters of this new scheme in the case of perfect codes
Reexamination of Quantum Bit Commitment: the Possible and the Impossible
Bit commitment protocols whose security is based on the laws of quantum
mechanics alone are generally held to be impossible. In this paper we give a
strengthened and explicit proof of this result. We extend its scope to a much
larger variety of protocols, which may have an arbitrary number of rounds, in
which both classical and quantum information is exchanged, and which may
include aborts and resets. Moreover, we do not consider the receiver to be
bound to a fixed "honest" strategy, so that "anonymous state protocols", which
were recently suggested as a possible way to beat the known no-go results are
also covered. We show that any concealing protocol allows the sender to find a
cheating strategy, which is universal in the sense that it works against any
strategy of the receiver. Moreover, if the concealing property holds only
approximately, the cheat goes undetected with a high probability, which we
explicitly estimate. The proof uses an explicit formalization of general two
party protocols, which is applicable to more general situations, and a new
estimate about the continuity of the Stinespring dilation of a general quantum
channel. The result also provides a natural characterization of protocols that
fall outside the standard setting of unlimited available technology, and thus
may allow secure bit commitment. We present a new such protocol whose security,
perhaps surprisingly, relies on decoherence in the receiver's lab.Comment: v1: 26 pages, 4 eps figures. v2: 31 pages, 5 eps figures; replaced
with published version; title changed to comply with puzzling Phys. Rev.
regulations; impossibility proof extended to protocols with infinitely many
rounds or a continuous communication tree; security proof of decoherence
monster protocol expanded; presentation clarifie
The need for more reliable information on the incidence and prevalence of occupationally related problems.
Dynamic Searchable Encryption with Access Control
We present a searchable encryption scheme for dynamic document collections in a multi-user scenario. Our scheme features fine-grained access control to search results, as well as access control to operations such as adding documents to the document
collection, or changing individual documents. The scheme features verifiability of search results. Our scheme also satisfies the forward privacy notion crucial for the security of dynamic searchable encryption schemes
- …
