132 research outputs found
Attenuation correction of myocardial perfusion scintigraphy images without transmission scanning
Attenuation correction is essential for reliable interpretation of emission tomography; however the use of transmission measurements to generate attenuation maps is limited by availability of equipment and potential mismatches between the transmission and emission measurements. This work investigates the possibility of estimating an attenuation map using measured scatter data without a transmission scan. A scatter model has been developed that predicts the distribution of photons which have been scattered once. The scatter model has been used as the basis of a maximum likelihood gradient ascent method (SMLGA) to estimate an attenuation map from measured scatter data. The SMLGA algorithm has been combined with an existing algorithm using photopeak data to estimate an attenuation map (MLAA) in order to obtain a more accurate attenuation map than using either algorithm alone. Iterations of the SMLGA-MLAA algorithm are alternated with iterations of the MLEM algorithm to estimate the activity distribution. Initial tests of the algorithm were performed in 2 dimensions using idealised data before extension to 3 dimensions. The basic algorithm has been tested in 3 dimensions using projection data simulated using a Monte Carlo simulator with software phantoms. All soft tissues within the body have similar attenuation characteristics and so only a small number of different values are normally present. A Level-Set technique to restrict the attenuation map to a piecewise constant function has therefore been investigated as a potential way to improve the quality of the reconstructed attenuation map. The basic SMLGA-MLAA algorithm contains a number of assumptions; the effect of these has been investigated and the model extended to include the effect of photons which are scattered more than once and scatter correction of the photopeak. The effect of different phantom shapes and activity distributions has been assessed and the final algorithm tested using data acquired using a physical phantom
Dietary fibre intake and risk of ischaemic and haemorrhagic stroke in the UK Women’s Cohort Study
BACKGROUND: Stroke risk is modifiable through many risk factors, one being healthy dietary habits. Fibre intake was associated with a reduced stroke risk in recent meta-analyses; however, data were contributed by relatively few studies, and few examined different stroke types. METHODS: A total of 27 373 disease-free women were followed up for 14.4 years. Diet was assessed with a 217-item food frequency questionnaire and stroke cases were identified using English Hospital Episode Statistics and mortality records. Survival analysis was applied to assess the risk of total, ischaemic or haemorrhagic stroke in relation to fibre intake. RESULTS: A total of 135 haemorrhagic and 184 ischaemic stroke cases were identified in addition to 138 cases where the stroke type was unknown or not recorded. Greater intake of total fibre, higher fibre density and greater soluble fibre, insoluble fibre and fibre from cereals were associated with a significantly lower risk for total stroke. For total stroke, the hazard ratio per 6 g/day total fibre intake was 0.89 (95% confidence intervals: 0.81–0.99). Different findings were observed for haemorrhagic and ischaemic stroke in healthy-weight or overweight women. Total fibre, insoluble fibre and cereal fibre were inversely associated with haemorrhagic stroke risk in overweight/obese participants, and in healthy-weight women greater cereal fibre was associated with a lower ischaemic stroke risk. In non-hypertensive women, higher fibre density was associated with lower ischaemic stroke risk. CONCLUSIONS: Greater total fibre and fibre from cereals are associated with a lower stroke risk, and associations were more consistent with ischaemic stroke. The different observations by stroke type, body mass index group or hypertensive status indicates potentially different mechanisms
Recommended from our members
Phosphorus dynamics in a tropical forest soil restored after strip mining
Background and aims We hypothesized that successful early ecosystem and soil development in these P-deficient soil materials will initially depend on effective re-establishment of P storage and cycling through organic matter. This hypothesis was tested in a 26-year chronosequence of seven lightly fertilized, oxidic soil materials restored to eucalypt forest communities after bauxite mining.
Methods Total P (Pt) status, Hedley P fractions and partial chemical speciation (NaOH-EDTA extraction and analysed using solution 31P NMR spectroscopy) were determined in the restored soils.
Results Concentrations of Pt and most Hedley fractions changed with restoration period, declined with depth and were strongly positively correlated with C and N concentrations. Biological P dominated the Labile and Intermediate P fractions while Long-term P was dominantly inorganic.
Organic P concentrations in NaOH-EDTA extracts and their chemical natures were similar in restored and unburned native forest sites. Phosphomonoesters were the dominant class of organic P.
Conclusions Surprisingly rapid P accretion and fractional changes occurred over 26 years, largely in the surface soils and closely associated with organic matter status. Alkaline hydrolysis products of phosphodiesters and pyrophosphate indicated the importance of microbial P cycling. The important consequences for long-term ecosystem development and biological diversity require further study
Meat consumption and risk of breast cancer in the UK Women's Cohort Study
We performed a survival analysis to assess the effect of meat consumption and meat type on the risk of breast cancer in the UK Women's Cohort Study. Between 1995 and 1998 a cohort of 35 372 women was recruited, aged between 35 and 69 years with a wide range of dietary intakes, assessed by a 217-item food frequency questionnaire. Hazard ratios (HRs) were estimated using Cox regression adjusted for known confounders. High consumption of total meat compared with none was associated with premenopausal breast cancer, HR=1.20 (95% CI: 0.86–1.68), and high non-processed meat intake compared with none, HR=1.20 (95% CI: 0.86–1.68). Larger effect sizes were found in postmenopausal women for all meat types, with significant associations with total, processed and red meat consumption. Processed meat showed the strongest HR=1.64 (95% CI: 1.14–2.37) for high consumption compared with none. Women, both pre- and postmenopausal, who consumed the most meat had the highest risk of breast cancer
Mapping Migratory Bird Prevalence Using Remote Sensing Data Fusion
This is the publisher’s final pdf. The published article is copyrighted by the Public Library of Science and can be found at: http://www.plosone.org/home.action.Background: Improved maps of species distributions are important for effective management of wildlife under increasing anthropogenic pressures. Recent advances in lidar and radar remote sensing have shown considerable potential for mapping forest structure and habitat characteristics across landscapes. However, their relative efficacies and integrated use in habitat mapping remain largely unexplored. We evaluated the use of lidar, radar and multispectral remote sensing data in predicting multi-year bird detections or prevalence for 8 migratory songbird species in the unfragmented temperate deciduous forests of New Hampshire, USA. \ud
\ud
Methodology and Principal Findings: A set of 104 predictor variables describing vegetation vertical structure and variability from lidar, phenology from multispectral data and backscatter properties from radar data were derived. We tested the accuracies of these variables in predicting prevalence using Random Forests regression models. All data sets showed more than 30% predictive power with radar models having the lowest and multi-sensor synergy ("fusion") models having highest accuracies. Fusion explained between 54% and 75% variance in prevalence for all the birds considered. Stem density from discrete return lidar and phenology from multispectral data were among the best predictors. Further analysis revealed different relationships between the remote sensing metrics and bird prevalence. Spatial maps of prevalence were consistent with known habitat preferences for the bird species. \ud
\ud
Conclusion and Significance: Our results highlight the potential of integrating multiple remote sensing data sets using machine-learning methods to improve habitat mapping. Multi-dimensional habitat structure maps such as those generated from this study can significantly advance forest management and ecological research by facilitating fine-scale studies at both stand and landscape level
Dietary acrylamide intake and risk of breast cancer in the UK women's cohort
No studies to date have demonstrated a clear association with breast cancer risk and dietary exposure to acrylamide.Methods:A 217-item food frequency questionnaire was used to estimate dietary acrylamide intake in 33,731 women aged 35-69 years from the UK Women's Cohort Study followed up for a median of 11 years
Multifractal Spatial Patterns and Diversity in an Ecological Succession
We analyzed the relationship between biodiversity and spatial biomass heterogeneity along an ecological succession developed in the laboratory. Periphyton (attached microalgae) biomass spatial patterns at several successional stages were obtained using digital image analysis and at the same time we estimated the species composition and abundance. We show that the spatial pattern was self-similar and as the community developed in an homogeneous environment the pattern is self-organized. To characterize it we estimated the multifractal spectrum of generalized dimensions Dq. Using Dq we analyze the existence of cycles of heterogeneity during succession and the use of the information dimension D1 as an index of successional stage. We did not find cycles but the values of D1 showed an increasing trend as the succession developed and the biomass was higher. D1 was also negatively correlated with Shannon's diversity. Several studies have found this relationship in different ecosystems but here we prove that the community self-organizes and generates its own spatial heterogeneity influencing diversity. If this is confirmed with more experimental and theoretical evidence D1 could be used as an index, easily calculated from remote sensing data, to detect high or low diversity areas
Poor food and nutrient intake among Indigenous and non-Indigenous rural Australian children
<p>Abstract</p> <p>Background</p> <p>The purpose of this study was to describe the food and nutrient intake of a population of rural Australian children particularly Indigenous children. Participants were aged 10 to 12 years, and living in areas of relative socio-economic disadvantage on the north coast of New South Wales.</p> <p>Methods</p> <p>In this descriptive cross-sectional study 215 children with a mean age of 11.30 (SD 0.04) years (including 82 Indigenous children and 93 boys) completed three 24-hour food recalls (including 1 weekend day), over an average of two weeks in the Australian summer of late 2005.</p> <p>Results</p> <p>A high proportion of children consumed less than the Australian Nutrient Reference Values for fibre (74-84% less than Adequate Intake (AI)), calcium (54-86% less than Estimated Average Requirement (EAR)), folate and magnesium (36% and 28% respectively less than EAR among girls), and the majority of children exceeded the upper limit for sodium (68-76% greater than Upper Limit (UL)). Energy-dense nutrient-poor (EDNP) food consumption contributed between 45% and 49% to energy. Hot chips, sugary drinks, high-fat processed meats, salty snacks and white bread were the highest contributors to key nutrients and sugary drinks were the greatest <it>per capita </it>contributor to daily food intake for all. <it>Per capita </it>intake differences were apparent by Indigenous status. Consumption of fruit and vegetables was low for all children. Indigenous boys had a higher intake of energy, macronutrients and sodium than non-Indigenous boys.</p> <p>Conclusions</p> <p>The nutrient intake and excessive EDNP food consumption levels of Australian rural children from disadvantaged areas are cause for concern regarding their future health and wellbeing, particularly for Indigenous boys. Targeted intervention strategies should address the high consumption of these foods.</p
- …
