495 research outputs found

    Clinical Impact of Hypercalcemia in Kidney Transplant

    Get PDF
    Hypercalcemia (HC) has been variably reported in kidney transplanted (KTx) recipients (5–15%). Calcium levels peak around the 3rd month after KTx and thereafter slightly reduce and stabilize. Though many factors have been claimed to induce HC after KTx, the persistence of posttransplant hyperparathyroidism (PT-HPT) of moderate-severe degree is universally considered the first causal factor. Though not proven, there are experimental and clinical suggestions that HC can adversely affect either the graft (nephrocalcinosis) and other organs or systems (vascular calcifications, erythrocytosis, pancreatitis, etc.). However, there is no conclusive evidence that correction of serum calcium levels might avoid the occurrence of these claimed clinical effects of HC. The best way to reduce the occurrence of HC after KTx is to treat as best we can the secondary hyperparathyroidism (SHP) during the uraemic stages. The indication to Parathyroidectomy (PTX), either before or after KTx, in order to prevent or to treat, respectively, HC after KTx, is still a matter of debate which has been revived by the availability of the calcimimetic cinacalcet for the treatment of PT-HPT. However, we still need to better clarify many points as regards the potential adverse effects related to either PTX or cinacalcet use in this clinical set, and we are waiting for the results of future randomized controlled trials to achieve some more definite conclusions on this topic

    Application of mesenchymal stem cells for therapeutic agent delivery in anti-tumor treatment

    Get PDF
    Mesenchymal stem cells (MSCs) are non-hematopoietic progenitor cells, which can be isolated from different types of tissues including bone marrow, adipose tissue, tooth pulp, and placenta/umbilical cord blood. There isolation from adult tissues circumvents the ethical concerns of working with embryonic or fetal stem cells, whilst still providing cells capable of differentiating into various cell lineages, such as adipocytes, osteocytes and chondrocytes. An important feature of MSCs is the low immunogenicity due to the lack of co-stimulatory molecules expression, meaning there is no need for immunosuppression during allogenic transplantation. The tropism of MSCs to damaged tissues and tumor sites makes them a promising vector for therapeutic agent delivery to tumors and metastatic niches. MSCs can be genetically modified by virus vectors to encode tumor suppressor genes, immunomodulating cytokines and their combinations,other therapeutic approaches include MSCs priming/loading with chemotherapeutic drugs or nanoparticles. MSCs derived membrane microvesicles (MVs), which play an important role in intercellular communication, are also considered as a new therapeutic agent and drug delivery vector. Recruited by the tumor, MSCs can exhibit both pro and anti-oncogenic properties. In this regard, for the development of new methods for cancer therapy using MSCs, a deeper understanding of the molecular and cellular interactions between MSCs and the tumor microenvironment is necessary. In this review, we discuss MSC and tumor interaction mechanisms and review the new therapeutic strategies using MSCs and MSCs derived MVs for cancer treatment

    Liquid biopsy in cervical cancer: Hopes and pitfalls

    Get PDF
    Cervical cancer (CC) is the fourth most common cancer in women worldwide, with about 90% of cancer-related deaths occurring in developing countries. The geographical influence on disease evolution reflects differences in the prevalence of human papilloma virus (HPV) infection, which is the main cause of CC, as well as in the access and quality of services for CC prevention and diagnosis. At present, the most diffused screening and diagnostic tools for CC are Papanicolaou test and the more sensitive HPV-DNA test, even if both methods require gynecological practices whose acceptance relies on the woman’s cultural and religious background. An alternative (or complimen-tary) tool for CC screening, diagnosis, and follow-up might be represented by liquid biopsy. Here, we summarize the main methodologies developed in this context, including circulating tumor cell detection and isolation, cell tumor DNA sequencing, coding and non-coding RNA detection, and exosomal miRNA identification. Moreover, the pros and cons of each method are discussed, and their potential applications in diagnosis and prognosis of CC, as well as their role in treatment mon-itoring, are explored. In conclusion, it is evident that despite many advances obtained in this field, further effort is needed to validate and standardize the proposed methodologies before any clinical use

    DEAD-Box Helicase 4 (Ddx4)+ Stem Cells Sustain Tumor Progression in Non-Serous Ovarian Cancers

    Get PDF
    DEAD-Box Helicase 4 (Ddx4)+ ovarian stem cells are able to differentiate into several cell types under appropriate stimuli. Ddx4 expression has been correlated with poor prognosis of serous ovarian cancer (OC), while the potential role of Ddx4+ cells in non-serous epithelial OC (NS-EOC) is almost unexplored. The aim of this study was to demonstrate the presence of Ddx4+ cells in NS-EOC and investigate the effect of follicle-stimulating hormone (FSH) on this population. Increased Ddx4 expression was demonstrated in samples from patients with advanced NS-EOC, compared to those with early-stage disease. Under FSH stimulation, OC-derived Ddx4+ cells differentiated into mesenchymal-like (ML) cells, able to deregulate genes involved in cell migration, invasiveness, stemness and chemoresistance in A2780 OC cells. This effect was primarily induced by ML-cells deriving from advanced NS-EOC, suggesting that a tumor-conditioned germ cell niche inhabits its microenvironment and is able to modulate, in a paracrine manner, tumor cell behavior through transcriptome modulation
    corecore