2,547 research outputs found
Editorial overview: Folding and binding: In silico, in vitro and in cellula
The essence of any biological processes relies on the conformational states of macromolecules and their interactions. It comes therefore with no surprises that the study of folding and binding has been centre stage since the birth of structural biology. In this context, the collaborative efforts of experimen- talists and theoreticians have tremendously increased our current knowl- edge on macromolecular structure and recognition. Nevertheless, several challenges and open questions are still present and a multidisciplinary approach would appear the most appropriate means to shed light onto the mechanisms of folding and binding to the highest level of detail. This thematic issue brings together a collection of reviews describing our current understanding of folding and binding, looking at these fundamental pro- blems from a wide perspective ranging from the single molecule to the complexity of the living cell, drawing on approaches that span from compu- tational (in silico), to the test tube (in vitro) and cell cultures (in cellula)
Sparse Dynamics for Partial Differential Equations
We investigate the approximate dynamics of several differential equations
when the solutions are restricted to a sparse subset of a given basis. The
restriction is enforced at every time step by simply applying soft thresholding
to the coefficients of the basis approximation. By reducing or compressing the
information needed to represent the solution at every step, only the essential
dynamics are represented. In many cases, there are natural bases derived from
the differential equations which promote sparsity. We find that our method
successfully reduces the dynamics of convection equations, diffusion equations,
weak shocks, and vorticity equations with high frequency source terms
Complex singularities and PDEs
In this paper we give a review on the computational methods used to
characterize the complex singularities developed by some relevant PDEs. We
begin by reviewing the singularity tracking method based on the analysis of the
Fourier spectrum. We then introduce other methods generally used to detect the
hidden singularities. In particular we show some applications of the Pad\'e
approximation, of the Kida method, and of Borel-Polya method. We apply these
techniques to the study of the singularity formation of some nonlinear
dispersive and dissipative one dimensional PDE of the 2D Prandtl equation, of
the 2D KP equation, and to Navier-Stokes equation for high Reynolds number
incompressible flows in the case of interaction with rigid boundaries
PDEs with Compressed Solutions
Sparsity plays a central role in recent developments in signal processing,
linear algebra, statistics, optimization, and other fields. In these
developments, sparsity is promoted through the addition of an norm (or
related quantity) as a constraint or penalty in a variational principle. We
apply this approach to partial differential equations that come from a
variational quantity, either by minimization (to obtain an elliptic PDE) or by
gradient flow (to obtain a parabolic PDE). Also, we show that some PDEs can be
rewritten in an form, such as the divisible sandpile problem and
signum-Gordon. Addition of an term in the variational principle leads to
a modified PDE where a subgradient term appears. It is known that modified PDEs
of this form will often have solutions with compact support, which corresponds
to the discrete solution being sparse. We show that this is advantageous
numerically through the use of efficient algorithms for solving based
problems.Comment: 21 pages, 15 figure
Direct simulation Monte Carlo schemes for Coulomb interactions in plasmas
We consider the development of Monte Carlo schemes for molecules with Coulomb
interactions. We generalize the classic algorithms of Bird and Nanbu-Babovsky
for rarefied gas dynamics to the Coulomb case thanks to the approximation
introduced by Bobylev and Nanbu (Theory of collision algorithms for gases and
plasmas based on the Boltzmann equation and the Landau-Fokker-Planck equation,
Physical Review E, Vol. 61, 2000). Thus, instead of considering the original
Boltzmann collision operator, the schemes are constructed through the use of an
approximated Boltzmann operator. With the above choice larger time steps are
possible in simulations; moreover the expensive acceptance-rejection procedure
for collisions is avoided and every particle collides. Error analysis and
comparisons with the original Bobylev-Nanbu (BN) scheme are performed. The
numerical results show agreement with the theoretical convergence rate of the
approximated Boltzmann operator and the better performance of Bird-type schemes
with respect to the original scheme
Estimation of protein folding probability from equilibrium simulations
The assumption that similar structures have similar folding probabilities
() leads naturally to a procedure to evaluate for every
snapshot saved along an equilibrium folding-unfolding trajectory of a
structured peptide or protein. The procedure utilizes a structurally
homogeneous clustering and does not require any additional simulation. It can
be used to detect multiple folding pathways as shown for a three-stranded
antiparallel -sheet peptide investigated by implicit solvent molecular
dynamics simulations.Comment: 7 pages, 4 figures, supplemetary material
- …
