2,547 research outputs found

    Editorial overview: Folding and binding: In silico, in vitro and in cellula

    Get PDF
    The essence of any biological processes relies on the conformational states of macromolecules and their interactions. It comes therefore with no surprises that the study of folding and binding has been centre stage since the birth of structural biology. In this context, the collaborative efforts of experimen- talists and theoreticians have tremendously increased our current knowl- edge on macromolecular structure and recognition. Nevertheless, several challenges and open questions are still present and a multidisciplinary approach would appear the most appropriate means to shed light onto the mechanisms of folding and binding to the highest level of detail. This thematic issue brings together a collection of reviews describing our current understanding of folding and binding, looking at these fundamental pro- blems from a wide perspective ranging from the single molecule to the complexity of the living cell, drawing on approaches that span from compu- tational (in silico), to the test tube (in vitro) and cell cultures (in cellula)

    Sparse Dynamics for Partial Differential Equations

    Full text link
    We investigate the approximate dynamics of several differential equations when the solutions are restricted to a sparse subset of a given basis. The restriction is enforced at every time step by simply applying soft thresholding to the coefficients of the basis approximation. By reducing or compressing the information needed to represent the solution at every step, only the essential dynamics are represented. In many cases, there are natural bases derived from the differential equations which promote sparsity. We find that our method successfully reduces the dynamics of convection equations, diffusion equations, weak shocks, and vorticity equations with high frequency source terms

    Complex singularities and PDEs

    Full text link
    In this paper we give a review on the computational methods used to characterize the complex singularities developed by some relevant PDEs. We begin by reviewing the singularity tracking method based on the analysis of the Fourier spectrum. We then introduce other methods generally used to detect the hidden singularities. In particular we show some applications of the Pad\'e approximation, of the Kida method, and of Borel-Polya method. We apply these techniques to the study of the singularity formation of some nonlinear dispersive and dissipative one dimensional PDE of the 2D Prandtl equation, of the 2D KP equation, and to Navier-Stokes equation for high Reynolds number incompressible flows in the case of interaction with rigid boundaries

    PDEs with Compressed Solutions

    Get PDF
    Sparsity plays a central role in recent developments in signal processing, linear algebra, statistics, optimization, and other fields. In these developments, sparsity is promoted through the addition of an L1L^1 norm (or related quantity) as a constraint or penalty in a variational principle. We apply this approach to partial differential equations that come from a variational quantity, either by minimization (to obtain an elliptic PDE) or by gradient flow (to obtain a parabolic PDE). Also, we show that some PDEs can be rewritten in an L1L^1 form, such as the divisible sandpile problem and signum-Gordon. Addition of an L1L^1 term in the variational principle leads to a modified PDE where a subgradient term appears. It is known that modified PDEs of this form will often have solutions with compact support, which corresponds to the discrete solution being sparse. We show that this is advantageous numerically through the use of efficient algorithms for solving L1L^1 based problems.Comment: 21 pages, 15 figure

    Direct simulation Monte Carlo schemes for Coulomb interactions in plasmas

    Full text link
    We consider the development of Monte Carlo schemes for molecules with Coulomb interactions. We generalize the classic algorithms of Bird and Nanbu-Babovsky for rarefied gas dynamics to the Coulomb case thanks to the approximation introduced by Bobylev and Nanbu (Theory of collision algorithms for gases and plasmas based on the Boltzmann equation and the Landau-Fokker-Planck equation, Physical Review E, Vol. 61, 2000). Thus, instead of considering the original Boltzmann collision operator, the schemes are constructed through the use of an approximated Boltzmann operator. With the above choice larger time steps are possible in simulations; moreover the expensive acceptance-rejection procedure for collisions is avoided and every particle collides. Error analysis and comparisons with the original Bobylev-Nanbu (BN) scheme are performed. The numerical results show agreement with the theoretical convergence rate of the approximated Boltzmann operator and the better performance of Bird-type schemes with respect to the original scheme

    Estimation of protein folding probability from equilibrium simulations

    Full text link
    The assumption that similar structures have similar folding probabilities (pfoldp_{fold}) leads naturally to a procedure to evaluate pfoldp_{fold} for every snapshot saved along an equilibrium folding-unfolding trajectory of a structured peptide or protein. The procedure utilizes a structurally homogeneous clustering and does not require any additional simulation. It can be used to detect multiple folding pathways as shown for a three-stranded antiparallel β\beta-sheet peptide investigated by implicit solvent molecular dynamics simulations.Comment: 7 pages, 4 figures, supplemetary material
    corecore