3,704 research outputs found

    Cloud spatial structure during the FIRE MS IFO

    Get PDF
    The fractal properties of clouds observed during the FIRE Marine Stratocumulus Intensive Field Observations (MS IFO) and their effects on the large scale radiative properties of the atmosphere are examined. This involves three states: (1) analysis of LANDSAT Thematic Mapper (TM) cloud data to determine the scaling properties associated with various cloud types; (2) simulation of fractal clouds with realistic scaling properties; and (3) computation of mean radiative properties of fractal clouds as a function of their scaling properties. Thirty-three LANDSAT scenes were acquired as part of the FIRE Marine Stratocumulus IFO in July 1987. They exhibit a wide variety of stratocumulus structures. Analysis has so far focused upon the July 7 scene, in which the NASA ER-2, the BMO C130 and the NCAR Electra repeatedly gathered data across a stratocumulus-fair weather cumulus transition

    Monovalent permeability, rectification, and ionic block of store-operated calcium channels in Jurkat T lymphocytes.

    Get PDF
    We used whole-cell recording to characterize ion permeation, rectification, and block of monovalent current through calcium release-activated calcium (CRAC) channels in Jurkat T lymphocytes. Under physiological conditions, CRAC channels exhibit a high degree of selectivity for Ca2+, but can be induced to carry a slowly declining Na+ current when external divalent ions are reduced to micromolar levels. Using a series of organic cations as probes of varying size, we measured reversal potentials and calculated permeability ratios relative to Na+, PX/PNa, in order to estimate the diameter of the conducting pore. Ammonium (NH4+) exhibited the highest relative permeability (PNH4/PNa = 1.37). The largest permeant ion, tetramethylammonium with a diameter of 0.55 nm, had PTMA/PNa of 0.09. N-methyl-D-glucamine (0.50 x 0.64 x 1.20 nm) was not measurably permeant. In addition to carrying monovalent current, NH4+ reduced the slow decline of monovalent current ("inactivation") upon lowering [Ca2+]o. This kinetic effect of extracellular NH4+ can be accounted for by an increase in intracellular pH (pHi), since raising intracellular pH above 8 reduced the extent of inactivation. In addition, decreasing pHi reduced monovalent and divalent current amplitudes through CRAC channels with a pKa of 6.8. In several channel types, Mg2+ has been shown to produce rectification by a voltage-dependent block mechanism. Mg2+ removal from the pipette solution permitted large outward monovalent currents to flow through CRAC channels while also increasing the channel's relative Cs+ conductance and eliminating the inactivation of monovalent current. Boltzmann fits indicate that intracellular Mg2+ contributes to inward rectification by blocking in a voltage-dependent manner, with a z delta product of 1.88. Ca2+ block from the outside was also found to be voltage dependent with z delta of 1.62. These experiments indicate that the CRAC channel, like voltage-gated Ca2+ channels, achieves selectivity for Ca2+ by selective binding in a large pore with current-voltage characteristics shaped by internal Mg2+

    Analysis of the variation within Sitka spruce, lodgepole pine and loblolly pine

    Get PDF

    Inhomogeneities of stratocumulus liquid water

    Get PDF
    There is a growing body of observational evidence on inhomogeneous cloud structure, most recently from the extensive measurements of the FIRE field program. Knowledge of cloud structure is important because it strongly influences the cloud radiative properties, one of the major factors in determining the global energy balance. Current atmospheric circulation models use plane-parallel radiation, so that the liquid water in each gridbox is assumed to be uniform, which gives an unrealistically large albedo. In reality cloud liquid water occupies only a subset of each gridbox, greatly reducing the mean albedo. If future climate models are to treat the hydrological cycle in a manner consistent with energy balance, a better treatment of cloud liquid is needed. FIRE concentrated upon two cloud types of special interest: cirrus and marine stratocumulus. Cirrus tend to be high and optically thin, thus reducing the effective radiative temperature without increasing the albedo significantly, leading to an enhanced greenhouse heating. In contrast, marine stratocumulus are low and optically thick, thus producing a large increase in reflected radiation with a small change in emitted radiation, giving a net cooling which could potentially mitigate the expected greenhouse warming. The FIRE measurements in California stratocumulus during June and July of 1987 show variations in cloud liquid water on all scales. Such variations are associated with inhomogeneous entrainment, in which entrained dry air, rather than mixing uniformly with cloudy air, remains intact in blobs of all sizes, which decay only slowly by invasion of cloudy air. Two important stratocumulus observations are described, followed by a simple fractal model which reproduces these properties, and finally, the model radiative properties are discussed

    Advances in imaging of new targets for pharmacological intervention in stroke: real-time tracking of T-cells in the ischaemic brain

    Get PDF
    Background and purpose: T‐cells may play a role in the evolution of ischaemic damage and repair, but the ability to image these cells in the living brain after a stroke has been limited. We aim to extend the technique of real‐time in situ brain imaging of T‐cells, previously shown in models of immunological diseases, to models of experimental stroke. Experimental approach: Male C57BL6 mice (6–8 weeks) (n= 3) received a total of 2–5 × 106 carboxyfluorescein diacetate succinimidyl ester (CFSE)‐labelled lymphocytes from donor C57BL6 mice via i.v. injection by adoptive transfer. Twenty‐four hours later, recipient mice underwent permanent left distal middle cerebral artery occlusion (MCAO) by electrocoagulation or by sham surgery under isoflurane anaesthesia. Female hCD2‐green fluorescent protein (GFP) transgenic mice that exhibit GFP‐labelled T‐cells underwent MCAO. At 24 or 48 h post‐MCAO, a sagittal brain slice (1500 µm thick) containing cortical branches of the occluded middle cerebral artery (MCA) was dissected and used for multiphoton laser scanning microscopy (MPLSM). Key results: Our results provide direct observations for the first time of dynamic T‐cell behaviour in living brain tissue in real time and herein proved the feasibility of MPLSM for ex vivo live imaging of immune response after experimental stroke. Conclusions and Implications: It is hoped that these advances in the imaging of immune cells will provide information that can be harnessed to a therapeutic advantage

    Regulation of AQP0 water permeability is enhanced by cooperativity.

    Get PDF
    Aquaporin 0 (AQP0), essential for lens clarity, is a tetrameric protein composed of four identical monomers, each of which has its own water pore. The water permeability of AQP0 expressed in Xenopus laevis oocytes can be approximately doubled by changes in calcium concentration or pH. Although each monomer pore functions as a water channel, under certain conditions the pores act cooperatively. In other words, the tetramer is the functional unit. In this paper, we show that changes in external pH and calcium can induce an increase in water permeability that exhibits either a positive cooperativity switch-like increase in water permeability or an increase in water permeability in which each monomer acts independently and additively. Because the concentrations of calcium and hydrogen ions increase toward the center of the lens, a concentration signal could trigger a regulatory change in AQP0 water permeability. It thus seems plausible that the cooperative modes of water permeability regulation by AQP0 tetramers mediated by decreased pH and elevated calcium are the physiologically important ones in the living lens

    Free Flyer Total and Spectral Solar Irradiance Sensor (TSIS) and Climate Services Mission

    Get PDF
    NOAA's planned Total and Spectral Solar Irradiance Sensor (TSIS) mission will fly along with the NOAA user service payloads Advanced Data Collection System (ADCS) and Search and Rescue Satellite Aided Tracking (SARSAT). In ' order to guarantee continuity in the 33-year solar irradiance climate data record, TSIS must be launched in time to overlap with current on-orbit solar irradiance instruments. Currently TSIS is moving towards a launch rcadin~ss date of January 2015. TSIS provides for continuation of the Total Irradiance Monitor (TIM) and the Spectral Irradiance Monitor (SIM) ,currently onboard NASA's Solar Radiation and Climate Experiment (SORCE) platform, launched in January 2003. The difficulty of ensuring continuity has increased due to the launch failure of NASA's Glory mission with its improved TIM. Achieving the needed overlap must now rely on extending SORCE. and maintaining the TSIS schedule. TSIS is one component of a NASA-NOAA joint program (JPSS) planned to transition certain climate observations to operational mode. We summarize issues of continuity, improvements being made to the TIM and 81M sensors, and plans to provide for traceability of total and spectral irradiance measurements to ground-based cryogenic standards

    Solar Spectral Irradiance and Climate

    Get PDF
    Spectrally resolved solar irradiance is recognized as being increasingly important to improving our understanding of the manner in which the Sun influences climate. There is strong empirical evidence linking total solar irradiance to surface temperature trends - even though the Sun has likely made only a small contribution to the last half-century's global temperature anomaly - but the amplitudes cannot be explained by direct solar heating alone. The wavelength and height dependence of solar radiation deposition, for example, ozone absorption in the stratosphere, absorption in the ocean mixed layer, and water vapor absorption in the lower troposphere, contribute to the "top-down" and "bottom-up" mechanisms that have been proposed as possible amplifiers of the solar signal. New observations and models of solar spectral irradiance are needed to study these processes and to quantify their impacts on climate. Some of the most recent observations of solar spectral variability from the mid-ultraviolet to the near-infrared have revealed some unexpected behavior that was not anticipated prior to their measurement, based on an understanding from model reconstructions. The atmospheric response to the observed spectral variability, as quantified in climate model simulations, have revealed similarly surprising and in some cases, conflicting results. This talk will provide an overview on the state of our understanding of the spectrally resolved solar irradiance, its variability over many time scales, potential climate impacts, and finally, a discussion on what is required for improving our understanding of Sun-climate connections, including a look forward to future observations
    corecore