5,985 research outputs found
Imprint of DESI fiber assignment on the anisotropic power spectrum of emission line galaxies
The Dark Energy Spectroscopic Instrument (DESI), a multiplexed fiber-fed
spectrograph, is a Stage-IV ground-based dark energy experiment aiming to
measure redshifts for 29 million Emission-Line Galaxies (ELG), 4 million
Luminous Red Galaxies (LRG), and 2 million Quasi-Stellar Objects (QSO). The
survey design includes a pattern of tiling on the sky and the locations of the
fiber positioners in the focal plane of the telescope, with the observation
strategy determined by a fiber assignment algorithm that optimizes the
allocation of fibers to targets. This strategy allows a given region to be
covered on average five times for a five-year survey, but with coverage varying
between zero and twelve, which imprints a spatially-dependent pattern on the
galaxy clustering. We investigate the systematic effects of the fiber
assignment coverage on the anisotropic galaxy clustering of ELGs and show that,
in the absence of any corrections, it leads to discrepancies of order ten
percent on large scales for the power spectrum multipoles. We introduce a
method where objects in a random catalog are assigned a coverage, and the mean
density is separately computed for each coverage factor. We show that this
method reduces, but does not eliminate the effect. We next investigate the
angular dependence of the contaminated signal, arguing that it is mostly
localized to purely transverse modes. We demonstrate that the cleanest way to
remove the contaminating signal is to perform an analysis of the anisotropic
power spectrum and remove the lowest bin, leaving
modes accurate at the few-percent level. Here, is the cosine of the angle
between the line-of-sight and the direction of . We also investigate
two alternative definitions of the random catalog and show they are comparable
but less effective than the coverage randoms method.Comment: Submitted to JCA
Studying High Energy Final State Interactions by N/D Method
We discuss the final state interaction effects at high energies via a
multi-channel N/D method. We find that the 2 by 2 charge--exchange final state
interactions typically contribute an enhancement factor of a few times
in the meson decay amplitudes, both for the real and the
imaginary part. We also make some discussions on the elastic rescattering
effects.Comment: 10 pages, revte
Metastable helium molecules as tracers in superfluid liquid He
Metastable helium molecules generated in a discharge near a sharp tungsten
tip operated in either pulsed mode or continuous field-emission mode in
superfluid liquid He are imaged using a laser-induced-fluorescence
technique. By pulsing the tip, a small cloud of He molecules is
produced. At 2.0 K, the molecules in the liquid follow the motion of the normal
fluid. We can determine the normal-fluid velocity in a heat-induced counterflow
by tracing the position of a single molecule cloud. As we run the tip in
continuous field-emission mode, a normal-fluid jet from the tip is generated
and molecules are entrained in the jet. A focused 910 nm pump laser pulse is
used to drive a small group of molecules to the vibrational state.
Subsequent imaging of the tagged molecules with an expanded 925 nm probe
laser pulse allows us to measure the velocity of the normal fluid. The
techniques we developed demonstrate for the first time the ability to trace the
normal-fluid component in superfluid helium using angstrom-sized particles.Comment: 4 pages, 7 figures. Submitted to Phys. Rev. Let
Azimuthal Correlation in Lepton-Hadron Scattering via Charged Weak-Current Processes
We consider the azimuthal correlation of the final-state particles in charged
weak-current processes. This correlation provides a test of perturbative
quantum chromodynamics. The azimuthal asymmetry is large in the semi-inclusive
processes in which we identify a final-state hadron, say, a charged pion
compared to that in the inclusive processes in which we do not identify
final-state particles and use only the calorimetric information. In
semi-inclusive processes the azimuthal asymmetry is more conspicuous when the
incident lepton is an antineutrino or a positron than when the incident lepton
is a neutrino or an electron. We analyze all the possible charged weak-current
processes and study the quantitative aspects of each process. We also compare
this result to the ep scattering with a photon exchange.Comment: 25 pages, 2 Postscript figures, uses RevTeX, fixes.st
The W_L W_L scattering at the LHC: improving the selection criteria
We present a systematic study of the different mechanisms leading to WW pair
production at the LHC, both in the same-sign and opposite-sign channels, and we
emphasize that the former offers much better potential for investigating
non-resonant W_L W_L scattering. We propose a new kinematic variable to isolate
the W_L W_L scattering component in same-sign WW production at the LHC.
Focusing on purely leptonic W decay channels, we show that it considerably
improves the LHC capabilities to shed light on the electroweak symmetry
breaking mechanism after collecting 100 fb^{-1} of data at sqrt{s} = 14 TeV.
The new variable is less effective in the opposite-sign WW channel due to
different background composition.Comment: 25 pages, 32 figure
- …
