198 research outputs found

    Deep Lesion Graphs in the Wild: Relationship Learning and Organization of Significant Radiology Image Findings in a Diverse Large-scale Lesion Database

    Full text link
    Radiologists in their daily work routinely find and annotate significant abnormalities on a large number of radiology images. Such abnormalities, or lesions, have collected over years and stored in hospitals' picture archiving and communication systems. However, they are basically unsorted and lack semantic annotations like type and location. In this paper, we aim to organize and explore them by learning a deep feature representation for each lesion. A large-scale and comprehensive dataset, DeepLesion, is introduced for this task. DeepLesion contains bounding boxes and size measurements of over 32K lesions. To model their similarity relationship, we leverage multiple supervision information including types, self-supervised location coordinates and sizes. They require little manual annotation effort but describe useful attributes of the lesions. Then, a triplet network is utilized to learn lesion embeddings with a sequential sampling strategy to depict their hierarchical similarity structure. Experiments show promising qualitative and quantitative results on lesion retrieval, clustering, and classification. The learned embeddings can be further employed to build a lesion graph for various clinically useful applications. We propose algorithms for intra-patient lesion matching and missing annotation mining. Experimental results validate their effectiveness.Comment: Accepted by CVPR2018. DeepLesion url adde

    Preparation and Performance Optimization of Two-Component Waterborne Polyurethane Locomotive Coating

    Get PDF
    This paper reports the effects of different formulas on the performance of waterborne polyurethane (WPU), including two-component WPU and curing agent, wetting dispersant, defoaming agent, and wetting agent. The optimization of rheological additives selection, through the optimization of coating physical properties and chemical properties, can make the film show uniform color and appearance without pinholes, bubbles, or wrinkles, and have a long probation period. Through the analysis of performance after a 1000-h quick ultraviolet (QUV) aging test, the light reduction rate is 23.19%, and the color difference is 1.9. As can be seen from the scanning electron microscope (SEM) image and the three-dimensional stereomicroscope, the film shows relatively uniform dispersion, good compactness, and smooth surface. The two-component WPU topcoat is found to have high gloss 87.1 (60°) and high weather resistance, which provides a positive indication for the modulation and production of waterborne locomotive paint

    Recent Advances and Applications of Semiconductor Photocatalytic Technology

    Get PDF
    Along with the development of industry and the improvement of people’s living standards, peoples’ demand on resources has greatly increased, causing energy crises and environmental pollution. In recent years, photocatalytic technology has shown great potential as a low-cost, environmentally-friendly, and sustainable technology, and it has become a hot research topic. However, current photocatalytic technology cannot meet industrial requirements. The biggest challenge in the industrialization of photocatalyst technology is the development of an ideal photocatalyst, which should possess four features, including a high photocatalytic efficiency, a large specific surface area, a full utilization of sunlight, and recyclability. In this review, starting from the photocatalytic reaction mechanism and the preparation of the photocatalyst, we review the classification of current photocatalysts and the methods for improving photocatalytic performance; we also further discuss the potential industrial usage of photocatalytic technology. This review also aims to provide basic and comprehensive information on the industrialization of photocatalysis technology

    Development and Characterization of EST-SSR Markers From RNA-Seq Data in Phyllostachys violascens

    Get PDF
    Bamboo are woody grass species containing important economic and ecological values. Lei bamboo (Phyllostachys violascens) is a kind of shoot-producing bamboo species with the highest economic yield per unit area. However, identifying different varieties of Lei bamboo based on morphological characteristics is difficult. Microsatellites play an important role in plant identification and genetic diversity analysis and are superior to other molecular markers. In this study, we identified 18,356 expressed sequence tag-simple sequence repeat (EST-SSR) loci in Lei bamboo transcriptome data. A total of 11,264 primer pairs were successfully designed from unigenes of all EST-SSR loci, and 96 primer pairs were randomly selected and synthesized. A total of 54 primer pairs were used for classifying 16 Lei bamboo varieties and 10 different Phyllostachys species. The number of polymorphism alleles among the 54 primer pairs ranged from 3 to 12 for P. violascens varieties and 3 to 20 for Phyllostachys. The phylogenetic tree based on polymorphism alleles successfully distinguished 16 P. violascens varieties and 10 Phyllostachys species. Our study provides abundant EST-SSR resources that are useful for genetic diversity analysis and molecular verification of bamboo and suggests that SSR markers developed from Lei bamboo are more efficient and reliable than ISSR, SRAP or AFLP markers

    Graphene Quantum Dots Doped PVDF(TBT)/PVP(TBT) Fiber Film with Enhanced Photocatalytic Performance

    Get PDF
    We report the fabrication of polyvinylidene fluoride (tetrabutyl titanate)/polyvinyl pyrrolidone ((tetrabutyl titanate))-graphene quantum dots [PVDF(TBT)/PVP(TBT)-GQDs] film photocatalyst with enhanced photocatalytic performance. The polyvinylidene fluoride (tetrabutyl titanate)/polyvinyl pyrrolidone ((tetrabutyl titanate)) [PVDF(TBT)/PVP(TBT)] film was first prepared with a dual-electrospinning method and then followed by attaching graphene quantum dots (GQDs) to the surface of the composite film through a hydrothermal method. Later, part of the PVP in the composite film was dissolved by a hydrothermal method. As a result, a PVDF(TBT)/PVP(TBT)-GQDs film photocatalyst with a larger specific surface area was achieved. The photocatalytic degradation behavior of the PVDF(TBT)/PVP(TBT)-GQDs film photocatalyst was examined by using Rhodamine B as the target contaminant. The PVDF(TBT)/PVP(TBT)-GQDs photocatalyst showed a higher photocatalytic efficiency than PVDF(TBT)-H2O, PVDF(TBT)/PVP(TBT)-H2O, and PVDF(TBT)-GQDs, respectively. The enhanced photocatalytic efficiency can be attributed to the broader optical response range of the PVDF(TBT)/PVP(TBT)-GQDs photocatalyst, which makes it useful as an effective photocatalyst under white light irradiation

    Timing of initial collision and suturing processes in the Himalaya and Zagros

    Get PDF
    The Tibetan and Iranian plateaus are the two most prominent orogenic plateaus on the present Earth built by continental collision. However, the timings of initial collision and suturing in the Himalaya and Zagros remain debated. In this Review, we summarize the timings, similarities and differences between the India–Eurasia collision and the Arabia–Eurasia collision, by comparing their sedimentary, magmatic, metamorphic, structural and palaeomagnetic records. The India–Eurasia collision is tightly constrained to have initiated in the central Himalaya at 65–59 Ma, possibly progressing towards the western and eastern Himalayas by 55–50 Ma. By contrast, the initial collision in the Zagros is loosely constrained to ~34 Ma, with a possibility of diachronous collision, younging to the southeast. Similarities between the two collisions include pre-collisional accretionary tectonism and magmatism, syn-collisional deformation and sedimentation, and crustal thickening. Apparent differences in lithospheric dynamics, deformation styles and metamorphism are attributed to variations in convergence rates, durations and magnitudes. Future research should focus on data-driven modelling and geophysical imaging beneath the Tibetan and Iranian plateaus to further quantify the geodynamic processes and driving forces contributing to continuous plate convergence, plateau formation and their surface impacts

    The impact of ageing mechanisms on musculoskeletal system diseases in the elderly

    Get PDF
    Ageing is an inevitable process that affects various tissues and organs of the human body, leading to a series of physiological and pathological changes. Mechanisms such as telomere depletion, stem cell depletion, macrophage dysfunction, and cellular senescence gradually manifest in the body, significantly increasing the incidence of diseases in elderly individuals. These mechanisms interact with each other, profoundly impacting the quality of life of older adults. As the ageing population continues to grow, the burden on the public health system is expected to intensify. Globally, the prevalence of musculoskeletal system diseases in elderly individuals is increasing, resulting in reduced limb mobility and prolonged suffering. This review aims to elucidate the mechanisms of ageing and their interplay while exploring their impact on diseases such as osteoarthritis, osteoporosis, and sarcopenia. By delving into the mechanisms of ageing, further research can be conducted to prevent and mitigate its effects, with the ultimate goal of alleviating the suffering of elderly patients in the future

    The role of monocytes in thrombotic diseases: a review

    Get PDF
    Cardiovascular and cerebrovascular diseases are the number one killer threatening people's life and health, among which cardiovascular thrombotic events are the most common. As the cause of particularly serious cardiovascular events, thrombosis can trigger fatal crises such as acute coronary syndrome (myocardial infarction and unstable angina), cerebral infarction and so on. Circulating monocytes are an important part of innate immunity. Their main physiological functions are phagocytosis, removal of injured and senescent cells and their debris, and development into macrophages and dendritic cells. At the same time, they also participate in the pathophysiological processes of pro-coagulation and anticoagulation. According to recent studies, monocytes have been found to play a significant role in thrombosis and thrombotic diseases of the immune system. In this manuscript, we review the relationship between monocyte subsets and cardiovascular thrombotic events and analyze the role of monocytes in arterial thrombosis and their involvement in intravenous thrombolysis. Finally, we summarize the mechanism and therapeutic regimen of monocyte and thrombosis in hypertension, antiphospholipid syndrome, atherosclerosis, rheumatic heart disease, lower extremity deep venous thrombosis, and diabetic nephropathy

    Whole Genome Expression Profiling and Signal Pathway Screening of MSCs in Ankylosing Spondylitis

    Get PDF
    The pathogenesis of dysfunctional immunoregulation of mesenchymal stem cells (MSCs) in ankylosing spondylitis (AS) is thought to be a complex process that involves multiple genetic alterations. In this study, MSCs derived from both healthy donors and AS patients were cultured in normal media or media mimicking an inflammatory environment. Whole genome expression profiling analysis of 33,351 genes was performed and differentially expressed genes related to AS were analyzed by GO term analysis and KEGG pathway analysis. Our results showed that in normal media 676 genes were differentially expressed in AS, 354 upregulated and 322 downregulated, while in an inflammatory environment 1767 genes were differentially expressed in AS, 1230 upregulated and 537 downregulated. GO analysis showed that these genes were mainly related to cellular processes, physiological processes, biological regulation, regulation of biological processes, and binding. In addition, by KEGG pathway analysis, 14 key genes from the MAPK signaling and 8 key genes from the TLR signaling pathway were identified as differentially regulated. The results of qRT-PCR verified the expression variation of the 9 genes mentioned above. Our study found that in an inflammatory environment ankylosing spondylitis pathogenesis may be related to activation of the MAPK and TLR signaling pathways
    corecore