6 research outputs found

    Emm type distribution of group A Streptococcus in China during 1990 and 2020: a systematic review and implications for vaccine coverage

    Get PDF
    BackgroundThe recent increase of group A Streptococcus (GAS) infections in Europe has aroused global concern. We aim to provide molecular biological data for GAS prevention and control in China by analyzing the temporal shift of emm type.MethodsWe collected studies reporting GAS emm types in China from 1990 to 2020 by PRISMA statement and established a summary database including emm types and literature quality assessment. Based on the database we analyzed the geographic distribution of emm types from 1990 to 2020 and assessed the coverage of the known GAS 30-valent vaccine. Outbreak-associated emm types that had been reported over the past 30 years were also included.Results47 high quality studies were included for a systematic analysis of emm type distribution. This generated a database including totally 12,347 GAS isolates and 85 emm types. Shift of dominant emm type was witnessed during the past 30 years in China. In mainland China, dominant types changed from emm3, emm1, emm4, emm12 in 1990s to emm12 and emm1 in 2000s and 2010s. Hong Kong and Taiwan were dominated by emm12, emm4 and emm1, of which emm4 reduced but emm12 increased in 2010s significantly. From 1990 to 2020, newly found emm types were increasingly reported in various regions of China. The reported 30-valent M protein vaccine covered 26 M types prevalent in China, including all dominant types

    >

    No full text

    A Novel Detection Procedure for Mutations in the 23S rRNA Gene of Macrolide-Resistant Mycoplasma pneumoniae with Two Non-Overlapping Probes Amplification Assay

    No full text
    Mycoplasma pneumoniae is a significant cause of community-acquired pneumonia, which is often empirically treated with macrolides (MLs), but, presently, resistance to MLs has been a matter of close clinical concern. This assay is intended to contribute to resistance detection of M. pneumoniae in clinical practice. A novel real-time PCR assay with two non-overlapping probes on the same nucleic acid strand was designed in this study. It could effectively detect all mutation types of M. pneumoniae in 23S rRNA at loci 2063 and 2064. The results were determined by the following methods: ΔCT < 0.5 for MLs-sensitive M. pneumoniae; ΔCT > 2.0 for MLs-resistant M. pneumoniae; 10 copies as a limit of detection for all types. For detection of M. pneumoniae in 92 clinical specimens, the consistency between the results of this assay and the frequently used real-time PCR results was 95.65%. The consistency of MLs resistance results between PCR sequencing and this assay was 100% in all 43 specimens. The assay could not only cover a comprehensive range of targets and have high detection sensitivity but is also directly used for detection and MLs analysis of M. pneumoniae in specimens

    Protecting stable biological nomenclatural systems enables universal communication : a collective international appeal

    No full text
    The fundamental value of universal nomenclatural systems in biology is that they enable unambiguous scientific communication. However, the stability of these systems is threatened by recent discussions asking for a fairer nomenclature, raising the possibility of bulk revision processes for "inappropriate" names. It is evident that such proposals come from very deep feelings, but we show how they can irreparably damage the foundation of biological communication and, in turn, the sciences that depend on it. There are four essential consequences of objective codes of nomenclature: universality, stability, neutrality, and transculturality. These codes provide fair and impartial guides to the principles governing biological nomenclature and allow unambiguous universal communication in biology. Accordingly, no subjective proposals should be allowed to undermine them
    corecore