14,556 research outputs found
Critical behavior of vector models with cubic symmetry
We report on some results concerning the effects of cubic anisotropy and
quenched uncorrelated impurities on multicomponent spin models. The analysis of
the six-loop three-dimensional series provides an accurate description of the
renormalization-group flow.Comment: 6 pages. Talk given at the V International Conference Renormalization
Group 2002, Strba, Slovakia, March 10-16 200
Entanglement entropy of random quantum critical points in one dimension
For quantum critical spin chains without disorder, it is known that the
entanglement of a segment of N>>1 spins with the remainder is logarithmic in N
with a prefactor fixed by the central charge of the associated conformal field
theory. We show that for a class of strongly random quantum spin chains, the
same logarithmic scaling holds for mean entanglement at criticality and defines
a critical entropy equivalent to central charge in the pure case. This
effective central charge is obtained for Heisenberg, XX, and quantum Ising
chains using an analytic real-space renormalization group approach believed to
be asymptotically exact. For these random chains, the effective universal
central charge is characteristic of a universality class and is consistent with
a c-theorem.Comment: 4 pages, 3 figure
Geometrical optics analysis of the short-time stability properties of the Einstein evolution equations
Many alternative formulations of Einstein's evolution have lately been
examined, in an effort to discover one which yields slow growth of
constraint-violating errors. In this paper, rather than directly search for
well-behaved formulations, we instead develop analytic tools to discover which
formulations are particularly ill-behaved. Specifically, we examine the growth
of approximate (geometric-optics) solutions, studied only in the future domain
of dependence of the initial data slice (e.g. we study transients). By
evaluating the amplification of transients a given formulation will produce, we
may therefore eliminate from consideration the most pathological formulations
(e.g. those with numerically-unacceptable amplification). This technique has
the potential to provide surprisingly tight constraints on the set of
formulations one can safely apply. To illustrate the application of these
techniques to practical examples, we apply our technique to the 2-parameter
family of evolution equations proposed by Kidder, Scheel, and Teukolsky,
focusing in particular on flat space (in Rindler coordinates) and Schwarzchild
(in Painleve-Gullstrand coordinates).Comment: Submitted to Phys. Rev.
Critical thermodynamics of two-dimensional N-vector cubic model in the five-loop approximation
The critical behavior of the two-dimensional N-vector cubic model is studied
within the field-theoretical renormalization-group (RG) approach. The
beta-functions and critical exponents are calculated in the five-loop
approximation, RG series obtained are resummed using Pade-Borel-Leroy and
conformal mapping techniques. It is found that for N = 2 the continuous line of
fixed points is well reproduced by the resummed RG series and an account for
the five-loop terms makes the lines of zeros of both beta-functions closer to
each another. For N > 2 the five-loop contributions are shown to shift the
cubic fixed point, given by the four-loop approximation, towards the Ising
fixed point. This confirms the idea that the existence of the cubic fixed point
in two dimensions under N > 2 is an artifact of the perturbative analysis. In
the case N = 0 the results obtained are compatible with the conclusion that the
impure critical behavior is controlled by the Ising fixed point.Comment: 18 pages, 4 figure
Observations Outside the Light-Cone: Algorithms for Non-Equilibrium and Thermal States
We apply algorithms based on Lieb-Robinson bounds to simulate time-dependent
and thermal quantities in quantum systems. For time-dependent systems, we
modify a previous mapping to quantum circuits to significantly reduce the
computer resources required. This modification is based on a principle of
"observing" the system outside the light-cone. We apply this method to study
spin relaxation in systems started out of equilibrium with initial conditions
that give rise to very rapid entanglement growth. We also show that it is
possible to approximate time evolution under a local Hamiltonian by a quantum
circuit whose light-cone naturally matches the Lieb-Robinson velocity.
Asymptotically, these modified methods allow a doubling of the system size that
one can obtain compared to direct simulation. We then consider a different
problem of thermal properties of disordered spin chains and use quantum belief
propagation to average over different configurations. We test this algorithm on
one dimensional systems with mixed ferromagnetic and anti-ferromagnetic bonds,
where we can compare to quantum Monte Carlo, and then we apply it to the study
of disordered, frustrated spin systems.Comment: 19 pages, 12 figure
Mott transition and dimerization in the one-dimensional SU Hubbard model
The one-dimensional SU Hubbard model is investigated numerically for
, and 5 at half filling and filling using the density-matrix
renormalization-group (DMRG) method. The energy gaps and various quantum
information entropies are calculated. In the half-filled case, finite spin and
charge gaps are found for arbitrary positive if . Furthermore, it is
shown that the transition to the gapped phase at is of
Kosterlitz-Thouless type and is accompanied by a bond dimerization both for
even and odd . In the -filled case, the transition has similar features
as the metal-insulator transition in the half-filled SU(2) Hubbard model. The
charge gap opens exponentially slowly for , the spin sector
remains gapless, and the ground state is non-dimerized.Comment: 9 pages, 12 figure
Entanglement entropy of two disjoint intervals in c=1 theories
We study the scaling of the Renyi entanglement entropy of two disjoint blocks
of critical lattice models described by conformal field theories with central
charge c=1. We provide the analytic conformal field theory result for the
second order Renyi entropy for a free boson compactified on an orbifold
describing the scaling limit of the Ashkin-Teller (AT) model on the self-dual
line. We have checked this prediction in cluster Monte Carlo simulations of the
classical two dimensional AT model. We have also performed extensive numerical
simulations of the anisotropic Heisenberg quantum spin-chain with tree-tensor
network techniques that allowed to obtain the reduced density matrices of
disjoint blocks of the spin-chain and to check the correctness of the
predictions for Renyi and entanglement entropies from conformal field theory.
In order to match these predictions, we have extrapolated the numerical results
by properly taking into account the corrections induced by the finite length of
the blocks to the leading scaling behavior.Comment: 37 pages, 23 figure
Spatially nonuniform phases in the one-dimensional SU(n) Hubbard model for commensurate fillings
The one-dimensional repulsive SU Hubbard model is investigated
analytically by bosonization approach and numerically using the density-matrix
renormalization-group (DMRG) method for , and 5 for commensurate
fillings where and are relatively prime. It is shown that the
behavior of the system is drastically different depending on whether ,
, or , the umklapp processes are irrelevant, the model is
equivalent to an -component Luttinger liquid with central charge . When
, the charge and spin modes are decoupled, the umklapp processes open a
charge gap for finite , whereas the spin modes remain gapless and the
central charge . The translational symmetry is not broken in the ground
state for any . On the other hand, when , the charge and spin modes are
coupled, the umklapp processes open gaps in all excitation branches, and a
spatially nonuniform ground state develops. Bond-ordered dimerized, trimerized
or tetramerized phases are found depending on the filling.Comment: 10 pages, 11 figure
Entanglement and particle correlations of Fermi gases in harmonic traps
We investigate quantum correlations in the ground state of noninteracting
Fermi gases of N particles trapped by an external space-dependent harmonic
potential, in any dimension. For this purpose, we compute one-particle
correlations, particle fluctuations and bipartite entanglement entropies of
extended space regions, and study their large-N scaling behaviors. The
half-space von Neumann entanglement entropy is computed for any dimension,
obtaining S_HS = c_l N^(d-1)/d ln N, analogously to homogenous systems, with
c_l=1/6, 1/(6\sqrt{2}), 1/(6\sqrt{6}) in one, two and three dimensions
respectively. We show that the asymptotic large-N relation S_A\approx \pi^2
V_A/3, between the von Neumann entanglement entropy S_A and particle variance
V_A of an extended space region A, holds for any subsystem A and in any
dimension, analogously to homogeneous noninteracting Fermi gases.Comment: 15 pages, 22 fig
Corrections to scaling in entanglement entropy from boundary perturbations
We investigate the corrections to scaling of the Renyi entropies of a region
of size l at the end of a semi-infinite one-dimensional system described by a
conformal field theory when the corrections come from irrelevant boundary
operators. The corrections from irrelevant bulk operators with scaling
dimension x have been studied by Cardy and Calabrese (2010), and they found not
only the expected corrections of the form l^(4-2x) but also unusual corrections
that could not have been anticipated by finite-size scaling arguments alone.
However, for the case of perturbations from irrelevant boundary operators we
find that the only corrections that can occur to leading order are of the form
l^(2-2x_b) for boundary operators with scaling dimension x_b < 3/2, and l^(-1)
when x_b > 3/2. When x_b=3/2 they are of the form l^(-1)log(l). A marginally
irrelevant boundary perturbation will give leading corrections going as
log(l)^(-3). No unusual corrections occur when perturbing with a boundary
operator.Comment: 8 pages. Minor improvements and updated references. Published versio
- …
