5,579 research outputs found
Vacancy in graphene: insight on magnetic properties from theoretical modeling
Magnetic properties of a single vacancy in graphene is a relevant and still
much discussed problem. The experimental results point to a clearly detectable
magnetic defect state at the Fermi energy, while calculations based on density
functional theory (DFT) yield widely varying results for the magnetic moment,
in the range of . We present a multi-tool \textit{ab
initio} theoretical study of the same defect, using two simulation protocols
for a defect in a crystal (cluster and periodic boundary conditions) and
different DFT functionals - bare and hybrid DFT, mixing a fraction of
Hartree-Fock exchange (XC). Our main conclusions are two-fold: First, we find
that due to the -character of the Fermi-energy states of graphene,
inclusion of XC is crucial and for a single isolated vacancy we can predict an
integer magnetic moment . Second, we find that due to the
specific symmetry of the graphene lattice, periodic arrays of single vacancies
may provide interesting diffuse spin-spin interactions
Temperature effects on the magnetization of quasi-one-dimensional Peierls distorted materials
It is shown that temperature acts to disrupt the magnetization of Peierls
distorted quasi-one-dimensional materials (Q1DM). The mean-field finite
temperature phase diagram for the field theory model employed is obtained by
considering both homogeneous and inhomogeneous condensates. The tricritical
points of the second order transition lines of the gap parameter and
magnetization are explicitly calculated. It is also shown that in the absence
of an external static magnetic field the magnetization is always zero, at any
temperature. As expected, temperature does not induce any magnetization effect
on Peierls distorted Q1DM.Comment: 11 pages, 2 figure
Literacy: A cultural influence on functional left-right differences in the inferior parietal cortex
The current understanding of hemispheric interaction is limited. Functional hemispheric specialization is likely to depend on both genetic and environmental factors. In the present study we investigated the importance of one factor, literacy, for the functional lateralization in the inferior parietal cortex in two independent samples of literate and illiterate subjects. The results show that the illiterate group are consistently more right-lateralized than their literate controls. In contrast, the two groups showed a similar degree of left-right differences in early speech-related regions of the superior temporal cortex. These results provide evidence suggesting that a cultural factor, literacy, influences the functional hemispheric balance in reading and verbal working memory-related regions. In a third sample, we investigated grey and white matter with voxel-based morphometry. The results showed differences between literacy groups in white matter intensities related to the mid-body region of the corpus callosum and the inferior parietal and parietotemporal regions (literate > illiterate). There were no corresponding differences in the grey matter. This suggests that the influence of literacy on brain structure related to reading and verbal working memory is affecting large-scale brain connectivity more than grey matter per se
Improving particle beam acceleration in plasmas
The dynamics of wave-particle interactions in magnetized plasmas restricts
the wave amplitude to moderate values for particle beam acceleration from rest
energy. We analyze how a perturbing invariant robust barrier modifies the phase
space of the system and enlarges the wave amplitude interval for particle
acceleration. For low values of the wave amplitude, the acceleration becomes
effective for particles with initial energy close to the rest energy. For
higher values of the wave amplitude, the robust barrier controls chaos in the
system and restores the acceleration process. We also determine the best
position for the perturbing barrier in phase space in order to increase the
final energy of the particles.Comment: Submitted for publicatio
Testing Luminescence Dating Methods for Small Samples from Very Young Fluvial Deposits
The impetus behind this study is to understand the sedimentological dynamics of very young fluvial systems in the Amazon River catchment and relate these to land use change and modern analogue studies of tidal rhythmites in the geologic record. Initial quartz optically stimulated luminescence (OSL) dating feasibility studies have concentrated on spit and bar deposits in the Rio Tapajós. Many of these features have an appearance of freshly deposited pristine sand, and these observations and information from anecdotal evidence and LandSat imagery suggest an apparent decadal stability. The characteristics of OSL from small (~5 cm) sub-samples from ~65 cm by ~2 cm diameter vertical cores are quite remarkable. Signals from medium-sized aliquots (5 mm diameter) exhibit very high specific luminescence sensitivity, have excellent dose recovery and recycling, essentially independent of preheat, and show minimal heat transfer even at the highest preheats. These characteristics enable measurement of very small signals with reasonable precision and, using modified single-aliquot regenerative-dose (SAR) approaches, equivalent doses as low as ~4 mGy can be obtained. Significant recuperation is observed for samples from two of the study sites and, in these instances, either the acceptance threshold was increased or growth curves were forced through the origin; recuperation is considered most likely to be a measurement artefact given the very small size of natural signals. Dose rates calculated from combined inductively coupled plasma mass spectrometry/inductively coupled plasma optical emission spectrometry (ICP-MS/ICP-OES) and high-resolution gamma spectrometry range from ~0.3 to 0.5 mGya−1 , and OSL ages for features so far investigated range from 13 to 34 years to several 100 years. Sampled sands are rich in quartz and yields of 212–250 µm or 250–310 µm grains indicate high-resolution sampling at 1–2 cm intervals is possible. Despite the use of medium-sized aliquots to ensure the recovery of very dim natural OSL signals, these results demonstrate the potential of OSL for studying very young active fluvial processes in these settings
Characterization in bi-parameter space of a non-ideal oscillator
The authors thank scientific agencies CAPES, CNPq (112952/2015-1), and FAPESP (2011/ 19269-11). M. S. Baptista also thanks EPSRC (EP/I03 2606/1).Peer reviewedPostprin
- …
