183 research outputs found
Nosy neighbours: large broods attract more visitors. A field experiment in the pied flycatcher, Ficedula hypoleuca
Life is uncertain. To reduce uncertainty and make adaptive decisions, individuals need to collect information. Individuals often visit the breeding sites of their conspecifics (i.e., “prospect”), likely to assess conspecifics’ reproductive success and to use such information to identify high-quality spots for future breeding. We investigated whether visitation rate by prospectors and success of visited sites are causally linked. We manipulated the reproductive success (enlarged, reduced, and control broods) in a nest-box population of migratory pied flycatchers, Ficedula hypoleuca, in Finland. We measured the visitation rates of prospectors at 87 nest-boxes continuously from manipulation (day 3 after hatching) to fledging. 302 adult pied flycatchers prospected 9194 times on these manipulated nests (at least 78% of detected prospectors were successful breeders). While the number of visitors and visits was not influenced by the relative change in brood size we induced, the resulting absolute brood size predicted the prospecting behaviour: the larger the brood size after manipulation, the more visitors and visits a nest had. The parental provisioning rate at a nest and brood size pre-manipulation did not predict the number of visitors or visits post-manipulation. More visitors, however, inspected early than late nests and broods in good condition. Our study suggests that individuals collect social information when visiting conspecific nests during breeding and provides evidence that large broods attract more visitors than small broods. We discuss the results in light of individual decision-making by animals in their natural environments
Sperm design and variation in the New World blackbirds (Icteridae)
Post-copulatory sexual selection (PCSS) is thought to be one of the evolutionary forces responsible for the rapid and divergent evolution of sperm design. However, whereas in some taxa particular sperm traits are positively associated with PCSS, in other taxa, these relationships are negative, and the causes of these different patterns across taxa are poorly understood. In a comparative study using New World blackbirds (Icteridae), we tested whether sperm design was influenced by the level of PCSS and found significant positive associations with the level of PCSS for all sperm components but head length. Additionally, whereas the absolute length of sperm components increased, their variation declined with the intensity of PCSS, indicating stabilizing selection around an optimal sperm design. Given the diversity of, and strong selection on, sperm design, it seems likely that sperm phenotype may influence sperm velocity within species. However, in contrast to other recent studies of passerine birds, but consistent with several other studies, we found no significant link between sperm design and velocity, using four different species that vary both in sperm design and PCSS. Potential reasons for this discrepancy between studies are discussed
Divergent artificial selection for female reproductive investment has a sexually concordant effect on male reproductive success
This is the final version of the article. Available from Wiley via the DOI in this record.Depending on the genetic architecture of male and female fitness, sex-specific selection can have negative, positive, or neutral consequences for the opposite sex. Theory predicts that conflict between male and female function may drive the breakdown of intrasexual genetic correlations, allowing sexual dimorphism in sexually antagonistic traits. Reproductive traits are the epitome of this, showing highly differentiated proximate functions between the sexes. Here we use divergent artificial selection lines for female reproductive investment to test how female-specific selection on a sex-limited trait affects male reproductive success in a precocial bird, the Japanese quail (Coturnix japonica). We demonstrate that selection for increased egg investment in females positively affects male reproductive success both in competitive and non-competitive mating situations. This increased reproductive success was linked to a relatively larger left testis in males originating from lines selected for high female reproductive investment. Given that female quail have functional gonads only on their left side, this correlated response indicates that selection has acted on the shared developmental basis of male and female gonads. Our study thereby provides evidence for a positive genetic correlation between key reproductive traits in males and females despite a high degree of sexual dimorphism, and suggests that, in this system, selection on reproductive function is sexually concordant.The study was financially supported by the Swiss National Science Foundation (PP00P3_128386 and PP00P3_157455 to BT and P2ZHP3_164962 to JLP)
New multilocus phylogeny reorganises the family Macrobiotidae (Eutardigrada) and unveils complex morphological evolution of the Macrobiotus hufelandi group
The family Macrobiotidae is one of the most speciose and diverse groups among tardigrades. Although there have been attempts to reconstruct the phylogeny of this family, the evolutionary relationships within Macrobiotidae are only superficially determined as available genetic data cover only a small fraction of this vast group. Here, we present the first extensive molecular phylogeny of the family based on four molecular markers (18S rRNA, 28Sr RNA, ITS-2 and COI) associated with detailed morphological data for the majority of taxa. The phylogenetic analysis includes nearly two hundred sequences representing more than sixty species, including sixteen taxa that have never been sequenced and/or analysed phylogenetically before. Our results recovered a new monophyletic group, comprising Macrobiotus spectabilis Thulin, 1928 and Macrobiotus grandis Richters, 1911, for which we erect a new genus, Sisubiotus gen. nov., to accommodate its evolutionary distinctiveness. The largest, so far, dataset for the family Macrobiotidae showed that the genus Xerobiotus is nested within the clade representing the genus Macrobiotus deeper than it was earlier assumed, therefore we propose to suppress Xerobiotus and transfer its species to Macrobiotus. Moreover, mapping key morphological traits onto macrobiotid phylogeny exposed complex evolution of phenotypes within the Macrobiotus hufelandi group, i.e. Macrobiotus s.s. Finally, our findings enabled a detailed revision and discussion on species compositions of the most ubiquitous tardigrade genera, species groups and species complexes, which resulted in changes of taxonomic statuses of a number of macrobiotid species. All this contributes to the reconstruction of the morphological evolution within Macrobiotidae
First records of limnoterrestrial tardigrades (Tardigrada) from Haida Gwaii, British Columbia, Canada
Moss samples were collected from trees and rocks in Haida Gwaii, British Columbia, Canada, and examined for the presence of tardigrades. Specimens from 24 taxa were found in 17 out of the 22 examined samples. New species records for British Columbia are provided and undescribed Grevenius and Crenubiotus species were found; a division in four morphogroups of Grevenius, based on number and presence of placoids, is provided to aid in the future identification. In addition, three specimens of a new species belonging to a potential new undescribed Diploechiniscus species were identified. The finding of Macrobiotus occidentalis occidentalis also provides the occasion to transfer the latter one to the genus Diaforobiotus, for which a new dichotomous key for the identification of its species is given and to redefine the family Richtersiusidae. The DNA sequences of selected taxa are also provided. The high number of tardigrade species collected from a relatively low number of samples highlight how still unexplored is tardigrade diversity, particularly in still-largely insular island systems like Haida Gwaii
Ecology explains anhydrobiotic performance across tardigrades, but the shared evolutionary history matters more
Desiccation stress is lethal to most animals. However, some microinvertebrate groups have evolved coping strategies, such as the ability to undergo anhydrobiosis (i.e. survival despite the loss of almost all body water). Tardigrades are one such group, where the molecular mechanisms of anhydrobiosis have been more thoroughly studied. Despite the ecological, evolutionary and biotechnological importance of anhydrobiosis, little is known about its inter- and intra-specific variability nor its relationship with natural habitat conditions or phylogenetic history.We developed a new index-anhydrobiotic recovery index (ARI)-to evaluate the anhydrobiotic performance of tardigrade populations from the family Macrobiotidae. Moreover, we compared the explanatory role of habitat humidity and phylogenetic history on this trait using a variance partitioning approach.We found that ARI is correlated with both microhabitat humidity and yearly rainfall, but it is mostly driven by phylogenetic niche conservatism (i.e. a high portion of ARI variation is explained by phylogeny alone). Finally, we showed that anhydrobiotic performance is highly variable, even between closely related species, and that their response to local ecological conditions is tightly linked to their phylogenetic history.This study not only presents key insights into an emerging model system, but also provides a new methodological approach for wider scale studies of the ecological and evolutionary implications of anhydrobiosis
Postcopulatory Sexual Selection Is Associated with Reduced Variation in Sperm Morphology
The evolutionary role of postcopulatory sexual selection in shaping male reproductive traits, including sperm morphology, is well documented in several taxa. However, previous studies have focused almost exclusively on the influence of sperm competition on variation among species. In this study we tested the hypothesis that intraspecific variation in sperm morphology is driven by the level of postcopulatory sexual selection in passerine birds.Using two proxy measures of sperm competition level, (i) relative testes size and (ii) extrapair paternity level, we found strong evidence that intermale variation in sperm morphology is negatively associated with the degree of postcopulatory sexual selection, independently of phylogeny.Our results show that the role of postcopulatory sexual selection in the evolution of sperm morphology extends to an intraspecific level, reducing the variation towards what might be a species-specific 'optimum' sperm phenotype. This finding suggests that while postcopulatory selection is generally directional (e.g., favouring longer sperm) across avian species, it also acts as a stabilising evolutionary force within species under intense selection, resulting in reduced variation in sperm morphology traits. We discuss some potential evolutionary mechanisms for this pattern
The cost of being tough : anhydrobiosis effects on mate choice and reproduction in a tardigrade
Organisms face physiological stress from environmental conditions, impacting survival, maintenance, and reproductive strategies. Cryptobiosis, a reversible state of metabolic inactivity that enables organisms to survive extreme conditions such as desiccation (anhydrobiosis), is known to have physiological costs, but its effects on mate choice and reproductive success remain unclear. Post-anhydrobiotic individuals might prioritize survival over reproduction (in the short term), thus making them less attractive to potential mates. We investigated how anhydrobiosis influences mate choice and reproductive success in the tardigrade Macrobiotus annewintersae. If cryptobiosis has deleterious effects on body condition, we predicted that post-anhydrobiotic individuals would exhibit delayed mate choice, be unfavoured when competing with control individuals, and suffer short-term mating opportunity costs (males) and/or fecundity costs (females). We also expected males to prioritize sperm motility recovery when presented with a mating opportunity. Post-anhydrobiotic individuals showed no delay in mate choice and were not unfavoured when competing with control individuals. However, post-anhydrobiotic males did not accelerate sperm motility recovery when paired with females, and most post-anhydrobiotic females did not lay eggs after mating opportunities. This study highlights the reproductive costs of anhydrobiosis, emphasizing the role of individual physiological state and timing of sexual reproduction in response to extreme environmental stress
Developmental temperature affects the expression of ejaculatory traits and the outcome of sperm competition in Callosobruchus maculatus
The outcome of post-copulatory sexual selection is determined by a complex
set of interactions between the primary reproductive traits of two or more
males and their interactions with the reproductive traits of the female.
Recently, a number of studies have shown the primary reproductive traits
of both males and females express phenotypic plasticity in response to the
thermal environment experienced during ontogeny. However, how plasticity
in these traits affects the dynamics of sperm competition remains largely
unknown. Here, we demonstrate plasticity in testes size, sperm size and
sperm number in response to developmental temperature in the bruchid
beetle Callosobruchus maculatus. Males reared at the highest temperature
eclosed at the smallest body size and had the smallest absolute and relative
testes size. Males reared at both the high- and low-temperature extremes
produced both fewer and smaller sperm than males reared at intermediate
temperatures. In the absence of sperm competition, developmental temperature
had no effect on male fertility. However, under conditions of sperm
competition, males reared at either temperature extreme were less competitive
in terms of sperm offence (P2), whereas those reared at the lowest temperature
were less competitive in terms of sperm defence (P1). This suggests
the developmental pathways that regulate the phenotypic expression of
these ejaculatory traits are subject to both natural and sexual selection: natural
selection in the pre-ejaculatory environment and sexual selection in
the post-ejaculatory environment. In nature, thermal heterogeneity during
development is commonplace. Therefore, we suggest the interplay between
ecology and development represents an important, yet hitherto underestimated
component of male fitness via post-copulatory sexual selection
- …
