499 research outputs found

    Beam Test Performance and Simulation of Prototypes for the ALICE Silicon Pixel Detector

    Full text link
    The silicon pixel detector (SPD) of the ALICE experiment in preparation at the Large Hadron Collider (LHC) at CERN is designed to provide the precise vertex reconstruction needed for measuring heavy flavor production in heavy ion collisions at very high energies and high multiplicity. The SPD forms the innermost part of the Inner Tracking System (ITS) which also includes silicon drift and silicon strip detectors. Single assembly prototypes of the ALICE SPD have been tested at the CERN SPS using high energy proton/pion beams in 2002 and 2003. We report on the experimental determination of the spatial precision. We also report on the first combined beam test with prototypes of the other ITS silicon detector technologies at the CERN SPS in November 2004. The issue of SPD simulation is briefly discussed.Comment: 4 pages, 5 figures, prepared for proceedings of 7th International Position Sensitive Detectors Conference, Liverpool, Sept. 200

    Performance of ALICE pixel prototypes in high energy beams

    Full text link
    The two innermost layers of the ALICE inner tracking system are instrumented with silicon pixel detectors. Single chip assembly prototypes of the ALICE pixels have been tested in high energy particle beams at the CERN SPS. Detection efficiency and spatial precision have been studied as a function of the threshold and the track incidence angle. The experimental method, data analysis and main results are presented.Comment: 10 pages, 9 figures, contribution to PIX2005 Workshop, Bonn (Germany), 5-8 September 200

    Search for black holes and other new phenomena in high-multiplicity final states in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Search for heavy resonances decaying into a vector boson and a Higgs boson in final states with charged leptons, neutrinos, and b quarks

    Get PDF
    Peer reviewe

    Search for high-mass diphoton resonances in proton-proton collisions at 13 TeV and combination with 8 TeV search

    Get PDF
    Peer reviewe

    Measurement of the mass difference between top quark and antiquark in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for leptophobic Z ' bosons decaying into four-lepton final states in proton-proton collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    The present and future of QCD

    Get PDF
    This White Paper presents an overview of the current status and future perspective of QCD research, based on the community inputs and scientific conclusions from the 2022 Hot and Cold QCD Town Meeting. We present the progress made in the last decade toward a deep understanding of both the fundamental structure of the sub-atomic matter of nucleon and nucleus in cold QCD, and the hot QCD matter in heavy ion collisions. We identify key questions of QCD research and plausible paths to obtaining answers to those questions in the near future, hence defining priorities of our research over the coming decades

    Curvature-bias corrections using a pseudomass method

    Get PDF
    Momentum measurements for very high momentum charged particles, such as muons from electroweak vector boson decays, are particularly susceptible to charge-dependent curvature biases that arise from misalignments of tracking detectors. Low momentum charged particles used in alignment procedures have limited sensitivity to coherent displacements of such detectors, and therefore are unable to fully constrain these misalignments to the precision necessary for studies of electroweak physics. Additional approaches are therefore required to understand and correct for these effects. In this paper the curvature biases present at the LHCb detector are studied using the pseudomass method in proton-proton collision data recorded at centre of mass energy √s = 13 TeV during 2016, 2017 and 2018. The biases are determined using Z → μ+μ- decays in intervals defined by the data-taking period, magnet polarity and muon direction. Correcting for these biases, which are typically at the 10-4 GeV-1 level, improves the Z → μ+μ- mass resolution by roughly 18% and eliminates several pathological trends in the kinematic-dependence of the mean dimuon invariant mass

    Measurements of the ϒ(1S), ϒ(2S), and ϒ(3S) differential cross sections in pp collisions at s=7TeV

    Get PDF
    Differential cross sections as a function of transverse momentum pTpT are presented for the production of ϒ(nS)ϒ(nS) (n = 1, 2, 3) states decaying into a pair of muons. Data corresponding to an integrated luminosity of 4.9View the MathML sourcefb−1 in pp collisions at View the MathML sources=7TeV were collected with the CMS detector at the LHC. The analysis selects events with dimuon rapidity |y|<1.2|y|<1.2 and dimuon transverse momentum in the range View the MathML source10<pT<100GeV. The measurements show a transition from an exponential to a power-law behavior at View the MathML sourcepT≈20GeV for the three ϒ states. Above that transition, the ϒ(3S)ϒ(3S) spectrum is significantly harder than that of the ϒ(1S)ϒ(1S). The ratios of the ϒ(3S)ϒ(3S) and ϒ(2S)ϒ(2S) differential cross sections to the ϒ(1S)ϒ(1S) cross section show a rise as pTpT increases at low pTpT, then become flatter at higher pTpT
    corecore