664 research outputs found
Geometry-aware Manipulability Learning, Tracking and Transfer
Body posture influences human and robots performance in manipulation tasks,
as appropriate poses facilitate motion or force exertion along different axes.
In robotics, manipulability ellipsoids arise as a powerful descriptor to
analyze, control and design the robot dexterity as a function of the
articulatory joint configuration. This descriptor can be designed according to
different task requirements, such as tracking a desired position or apply a
specific force. In this context, this paper presents a novel
\emph{manipulability transfer} framework, a method that allows robots to learn
and reproduce manipulability ellipsoids from expert demonstrations. The
proposed learning scheme is built on a tensor-based formulation of a Gaussian
mixture model that takes into account that manipulability ellipsoids lie on the
manifold of symmetric positive definite matrices. Learning is coupled with a
geometry-aware tracking controller allowing robots to follow a desired profile
of manipulability ellipsoids. Extensive evaluations in simulation with
redundant manipulators, a robotic hand and humanoids agents, as well as an
experiment with two real dual-arm systems validate the feasibility of the
approach.Comment: Accepted for publication in the Intl. Journal of Robotics Research
(IJRR). Website: https://sites.google.com/view/manipulability. Code:
https://github.com/NoemieJaquier/Manipulability. 24 pages, 20 figures, 3
tables, 4 appendice
Stationary states of two-dimensional magnetohydrodynamic turbulence: non-dissipative limit
A class of exact stationary statistical states for the inviscid magnetohydrodynamic equations in two dimensions and in various geometries is found and the corresponding fluctuation spectra are calculated. Some solutions agree with previous computations in the canonical ensemble while other solutions are found. In particular, the Navier—Stokes limit is recovered and maximum cross helicity solutions exist in two dimensions. The difficulty of proving existence and uniqueness of statistical solutions for non-dissipative two-dimensional turbulence is quoted in terms of rugged constants and associated Gibbs measur
Learning Task Priorities from Demonstrations
Bimanual operations in humanoids offer the possibility to carry out more than
one manipulation task at the same time, which in turn introduces the problem of
task prioritization. We address this problem from a learning from demonstration
perspective, by extending the Task-Parameterized Gaussian Mixture Model
(TP-GMM) to Jacobian and null space structures. The proposed approach is tested
on bimanual skills but can be applied in any scenario where the prioritization
between potentially conflicting tasks needs to be learned. We evaluate the
proposed framework in: two different tasks with humanoids requiring the
learning of priorities and a loco-manipulation scenario, showing that the
approach can be exploited to learn the prioritization of multiple tasks in
parallel.Comment: Accepted for publication at the IEEE Transactions on Robotic
- …
