6,442 research outputs found
Revisiting Crowd-Out
Reviews updated research on the extent to which expanding public health insurance programs reduces the role of private insurance, the impact of anti-crowd-out measures, and contributing factors such as incomes, enrollment patterns, and economic condition
Function generator eliminates necessity of series summation
Diode generator using four building-block circuits produces complex waveforms without the necessity of series summation. This highly specialized method of producing complex waveforms requires less power than present methods and uses simpler circuitry
MPST Software: grl_suppdoc
Due to the nature of the GRAIL mission, the GRAIL Mission Planning and Sequence Team (MPST) is required to generate ground and uplink products faster than ever done before. The existing correct_transmitter_min_dur tool that provides a similar function to grl_suppdoc lacks the ability to operate accurately or quickly enough to support the rapid turnaround required of the GRAIL MPST. The GRAIL MPST was required to build this new tool to facilitate the ground and uplink generation processes to meet a tight sequence development timeline. The grl_suppdoc tool enables the GRAIL MPST to generate automatically Deep Space Network (DSN) transmitter suppressions based on short uplinks that are found in the ground/modeled Predicted Events File (PEF). The grl_suppdoc script automatically generates applicable DSN uplink suppressions in the form of a Spacecraft Activity Sequence File (SASF) to protect the GRAIL project from short DSN uplink windows, which can be cause for operator error at the DSN antennas. Currently, no software exists that provides this functionality at the efficiency required for GRAIL sequence team operations. Compared to a manual process, this script reduces human error and saves considerable man-hours by automating and streamlining the mission planning and sequencing task for the GRAIL mission
MPST Software: grl_pef_check
This innovation is a tool used to verify and validate spacecraft sequences at the predicted events file (PEF) level for the GRAIL (Gravity Recovery and Interior Laboratory, see http://www.nasa. gov/mission_pages/grail/main/index. html) mission as part of the Multi-Mission Planning and Sequencing Team (MPST) operations process to reduce the possibility for errors. This tool is used to catch any sequence related errors or issues immediately after the seqgen modeling to streamline downstream processes. This script verifies and validates the seqgen modeling for the GRAIL MPST process. A PEF is provided as input, and dozens of checks are performed on it to verify and validate the command products including command content, command ordering, flight-rule violations, modeling boundary consistency, resource limits, and ground commanding consistency. By performing as many checks as early in the process as possible, grl_pef_check streamlines the MPST task of generating GRAIL command and modeled products on an aggressive schedule. By enumerating each check being performed, and clearly stating the criteria and assumptions made at each step, grl_pef_check can be used as a manual checklist as well as an automated tool. This helper script was written with a focus on enabling the user with the information they need in order to evaluate a sequence quickly and efficiently, while still keeping them informed and active in the overall sequencing process. grl_pef_check verifies and validates the modeling and sequence content prior to investing any more effort into the build. There are dozens of various items in the modeling run that need to be checked, which is a time-consuming and errorprone task. Currently, no software exists that provides this functionality. Compared to a manual process, this script reduces human error and saves considerable man-hours by automating and streamlining the mission planning and sequencing task for the GRAIL mission
The assessment for the potential introduction, spread and maintenance of African Swine Fever in the European Union from the Trans Caucasus Countries or the Russian Federation
MPST Software: MoonKommand
This software automatically processes Sally Ride Science (SRS) delivered MoonKAM camera control files (ccf) into uplink products for the GRAIL-A and GRAIL-B spacecraft as part of an education and public outreach (EPO) extension to the Grail Mission. Once properly validated and deemed safe for execution onboard the spacecraft, MoonKommand generates the command products via the Automated Sequence Processor (ASP) and generates uplink (.scmf) files for radiation to the Grail-A and/or Grail-B spacecraft. Any errors detected along the way are reported back to SRS via email. With Moon Kommand, SRS can control their EPO instrument as part of a fully automated process. Inputs are received from SRS as either image capture files (.ccficd) for new image requests, or downlink/delete files (.ccfdl) for requesting image downlink from the instrument and on-board memory management. The Moon - Kommand outputs are command and file-load (.scmf) files that will be uplinked by the Deep Space Network (DSN). Without MoonKommand software, uplink product generation for the MoonKAM instrument would be a manual process. The software is specific to the Moon - KAM instrument on the GRAIL mission. At the time of this writing, the GRAIL mission was making final preparations to begin the science phase, which was scheduled to continue until June 2012
Sizes of walleye pollock (Theragra chalcogramma) and Atka mackerel (Pleurogrammus monopterygius) consumed by the western stock of Steller sea lions (Eumetopias jubatus) in Alaska from 1999 to 2000
Prey-size selectivity by Steller sea lions (Eumetopias jubatus) is relevant for understanding the foraging behavior of this declining predator, but studies have been problematic because of the absence and erosion of otoliths usually used to estimate fish length. Therefore, we developed regression formulae to estimate fish length from seven diagnostic cranial structures of walleye pollock (Theragra chalcogramma) and Atka mackerel (Pleurogrammus monopterygius). For both species, all structure measurements were related with fork length of prey (r2 range: 0.78−0.99). Fork length (FL) of walleye pollock and Atka mackerel consumed by Steller sea lions was estimated by applying these regression models to cranial structures recovered from scats (feces) collected between 1998 and 2000 across the range of the Alaskan western stock of Steller sea lions. Experimentally derived digestion correction factors were applied to take into account loss of size due to digestion. Fork lengths of walleye pollock consumed by Steller sea lions ranged from 3.7 to 70.8 cm (mean=39.3 cm, SD=14.3 cm, n=666) and Atka mackerel ranged from 15.3 to 49.6 cm (mean=32.3 cm, SD=5.9 cm, n=1685). Although sample sizes were limited, a greater proportion of juvenile (≤20 cm) walleye pollock were found in samples collected during the summer (June−September) on haul-out sites (64% juveniles, n=11 scats) than on summer rookeries (9% juveniles, n=132 scats) or winter (February−March) haul-out sites (3% juveniles, n=69 scats). Annual changes in the size of Atka mackerel consumed by Steller sea lions corresponded to changes in the length distribution of Atka mackerel resulting from exceptionally strong year classes. Considerable overlap (>51%) in the size of walleye pollock and Atka mackerel taken by Steller sea lions and the sizes of these species caught by the commercial trawl fishery were demonstrated
A method to improve size estimates of walleye pollock (Theragra chalcogramma) Atka mackerel (Pleurogrammus monopterygius) consumed by pinnipeds: digestion correction factors applied to bones and otoliths recovered in scats
The lengths of otoliths and other skeletal structures recovered from the scats of pinnipeds, such as Steller sea lions (Eumetopias jubatus), correlate with body size and can be used to estimate the length of prey consumed. Unfortunately, otoliths are often found in too few scats or are too digested to usefully estimate prey size. Alternative diagnostic bones are frequently recovered, but few bone-size to prey-size correlations exist and bones are also reduced in size by various degrees owing to digestion. To prevent underestimates in prey sizes consumed
techniques are required to account for the degree of digestion of alternative bones prior to estimating prey size. We developed a method (using defined criteria and photo-reference material) to assign the degree of digestion for key cranial structures of two prey species: walleye pollock (Theragra chalcogramma) and Atka mackerel (Pleurogrammus monopterygius). The method grades each structure into one of three condition categories; good, fair or poor. We also conducted feeding trials with captive Steller sea lions, feeding both fish species to determine the extent of erosion of each structure and to derive condition-specific digestion correction factors to reconstruct the original sizes of the structures consumed. In general, larger structures were relatively more digested than smaller ones. Mean size reduction varied between different types of structures (3.3−26.3%), but was not influenced by the size of the prey consumed. Results from the observations and experiments were combined to be able to reconstruct the size of prey consumed by sea lions and other pinnipeds. The proposed method has four steps: 1) measure the recovered structures and grade the extent of digestion by using defined criteria and photo-reference collection; 2) exclude structures graded in poor condition; 3) multiply measurements of structures in good and fair condition by their appropriate digestion correction factors to derive their original size; and 4) calculate the size of prey from allometric regressions relating corrected structure measurements to body lengths. This technique can be readily applied to piscivore dietary studies that use hard remains of fish
Four-week rapamycin treatment improves muscular dystrophy in a fukutin-deficient mouse model of dystroglycanopathy
Tissue mass-normalized values of cytochrome C reduced in vitro by succinate dehydrogenase from homogenized TAs of VEH- or RAPA-treated LC and KO mice. Two-way ANOVA. (PDF 291 kb
- …
