201 research outputs found
On effective actions of BPS branes and their higher derivative corrections
We calculate in detail the disk level S-matrix element of one Ramond-Ramond
field and three gauge field vertex operators in the world volume of BPS branes,
to find four gauge field couplings to all orders of up to on-shell
ambiguity. Then using these infinite couplings we find that the massless pole
of the field theory amplitude is exactly equal to the massless pole S-matrix
element of this amplitude for the case to all orders of .
Finally we show that the infinite massless poles and the contact terms of this
amplitude for the case can be reproduced by the Born-Infeld action and
the Wess-Zumino actions and by their higher derivative corrections.Comment: 26 pages, 2 figures, minor corrections,references added and version
published in JHE
DBI analysis of generalised permutation branes
We investigate D-branes on the product GxG of two group manifolds described
as Wess-Zumino-Novikov-Witten models. When the levels of the two groups
coincide, it is well known that there exist permutation D-branes which are
twisted by the automorphism exchanging the two factors. When the levels are
different, the D-brane charge group demands that there should be
generalisations of these permutation D-branes, and a geometric construction for
them was proposed in hep-th/0509153. We give further evidence for this proposal
by showing that the generalised permutation D-branes satisfy the
Dirac-Born-Infeld equations of motion for arbitrary compact, simply connected
and simple Lie groups G.Comment: 19 pages, computation in section 3.5.1 corrected, conclusions
unchange
Non-simply-laced Lie algebras via F theory strings
In order to describe the appearance in F theory of the non--simply--laced Lie
algebras, we use the representation of symmetry enhancements by means of string
junctions. After an introduction to the techniques used to describe symmetry
enhancement, that is algebraic geometry, BPS states analysis and string
junctions, we concentrate on the latter. We give an explicit description of the
folding of D_{2n} to B_n of the folding of E_6 to F_4 and that of D_4 to G_2 in
terms of junctions and Jordan strings. We also discuss the case of C_n, but we
are unable in this case to provide a string interpretation.Comment: 24 pages, 3 figure
Ripple modulated electronic structure of a 3D topological insulator
3D topological insulators, similar to the Dirac material graphene, host
linearly dispersing states with unique properties and a strong potential for
applications. A key, missing element in realizing some of the more exotic
states in topological insulators is the ability to manipulate local electronic
properties. Analogy with graphene suggests a possible avenue via a topographic
route by the formation of superlattice structures such as a moir\'e patterns or
ripples, which can induce controlled potential variations. However, while the
charge and lattice degrees of freedom are intimately coupled in graphene, it is
not clear a priori how a physical buckling or ripples might influence the
electronic structure of topological insulators. Here we use Fourier transform
scanning tunneling spectroscopy to determine the effects of a one-dimensional
periodic buckling on the electronic properties of Bi2Te3. By tracking the
spatial variations of the scattering vector of the interference patterns as
well as features associated with bulk density of states, we show that the
buckling creates a periodic potential modulation, which in turn modulates the
surface and the bulk states. The strong correlation between the topographic
ripples and electronic structure indicates that while doping alone is
insufficient to create predetermined potential landscapes, creating ripples
provides a path to controlling the potential seen by the Dirac electrons on a
local scale. Such rippled features may be engineered by strain in thin films
and may find use in future applications of topological insulators.Comment: Nature Communications (accepted
Revisiting the S-matrix approach to the open superstring low energy effective lagrangian
The conventional S-matrix approach to the (tree level) open string low energy
effective lagrangian assumes that, in order to obtain all its bosonic
order terms, it is necessary to know the open string (tree level)
-point amplitude of massless bosons, at least expanded at that order in
. In this work we clarify that the previous claim is indeed valid for
the bosonic open string, but for the supersymmetric one the situation is much
more better than that: there are constraints in the kinematical bosonic terms
of the amplitude (probably due to Spacetime Supersymmetry) such that a much
lower open superstring -point amplitude is needed to find all the
order terms. In this `revisited' S-matrix approach we have
checked that, at least up to order, using these kinematical
constraints and only the known open superstring 4-point amplitude, it is
possible to determine all the bosonic terms of the low energy effective
lagrangian. The sort of results that we obtain seem to agree completely with
the ones achieved by the method of BPS configurations, proposed about ten years
ago. By means of the KLT relations, our results can be mapped to the NS-NS
sector of the low energy effective lagrangian of the type II string theories
implying that there one can also find kinematical constraints in the -point
amplitudes and that important informations can be inferred, at least up to
order, by only using the (tree level) 4-point amplitude.Comment: 34 pages, 3 figure, Submitted on Aug 4, 2012, Published on Oct 15,
201
On Non-linear Action for Gauged M2-brane
We propose a non-linear extension of U(1) \times U(1) (abelian) ABJM model
including T_{M2} (higher derivative) corrections. The action proposed here is
expected to describe a single M2-brane proving C^4/Z_k target space. The model
includes couplings with the 3-form background in the eleven-dimensional
supergravity which is consistent with the orbifold projection. We show that the
novel higgs mechanism proposed by Mukhi and Papageorgakis does work even in the
presence of higher derivative corrections and couplings with the background
field, giving the correct structure of the Dirac-Born-Infeld action with
Wess-Zumino term for a D2-brane. We also find half BPS solutions in the full
non-linear theory which is interpreted as an another M2-brane intersecting with
the original M2-brane. A possible generalization to U(N) \times U(N) gauge
group is briefly discussed.Comment: 19 pages, no figure, references added, typos correcte
The Hilbert Series of the One Instanton Moduli Space
The moduli space of k G-instantons on R^4 for a classical gauge group G is
known to be given by the Higgs branch of a supersymmetric gauge theory that
lives on Dp branes probing D(p + 4) branes in Type II theories. For p = 3,
these (3 + 1) dimensional gauge theories have N = 2 supersymmetry and can be
represented by quiver diagrams. The F and D term equations coincide with the
ADHM construction. The Hilbert series of the moduli spaces of one instanton for
classical gauge groups is easy to compute and turns out to take a particularly
simple form which is previously unknown. This allows for a G invariant
character expansion and hence easily generalisable for exceptional gauge
groups, where an ADHM construction is not known. The conjectures for
exceptional groups are further checked using some new techniques like sewing
relations in Hilbert Series. This is applied to Argyres-Seiberg dualities.Comment: 43 pages, 22 figure
ABJM Baryon Stability and Myers effect
We consider magnetically charged baryon vertex like configurations in AdS^4 X
CP^3 with a reduced number of quarks l. We show that these configurations are
solutions to the classical equations of motion and are stable beyond a critical
value of l. Given that the magnetic flux dissolves D0-brane charge it is
possible to give a microscopical description in terms of D0-branes expanding
into fuzzy CP^n spaces by Myers dielectric effect. Using this description we
are able to explore the region of finite 't Hooft coupling.Comment: 29 pages, Latex; minor changes; version to appear in JHE
F-Theorem without Supersymmetry
The conjectured F-theorem for three-dimensional field theories states that
the finite part of the free energy on S^3 decreases along RG trajectories and
is stationary at the fixed points. In previous work various successful tests of
this proposal were carried out for theories with {\cal N}=2 supersymmetry. In
this paper we perform more general tests that do not rely on supersymmetry. We
study perturbatively the RG flows produced by weakly relevant operators and
show that the free energy decreases monotonically. We also consider large N
field theories perturbed by relevant double trace operators, free massive field
theories, and some Chern-Simons gauge theories. In all cases the free energy in
the IR is smaller than in the UV, consistent with the F-theorem. We discuss
other odd-dimensional Euclidean theories on S^d and provide evidence that
(-1)^{(d-1)/2} \log |Z| decreases along RG flow; in the particular case d=1
this is the well-known g-theorem.Comment: 34 pages, 2 figures; v2 refs added, minor improvements; v3 refs
added, improved section 4.3; v4 minor improvement
D-Branes on the Conifold and N=1 Gauge/Gravity Dualities
We review extensions of the AdS/CFT correspondence to gauge/ gravity
dualities with N=1 supersymmetry. In particular, we describe the gauge/gravity
dualities that emerge from placing D3-branes at the apex of the conifold. We
consider first the conformal case, with discussions of chiral primary operators
and wrapped D-branes. Next, we break the conformal symmetry by adding a stack
of partially wrapped D5-branes to the system, changing the gauge group and
introducing a logarithmic renormalization group flow. In the gravity dual, the
effect of these wrapped D5-branes is to turn on the flux of 3-form field
strengths. The associated RR 2-form potential breaks the U(1) R-symmetry to
and we study this phenomenon in detail. This extra flux also leads to
deformation of the cone near the apex, which describes the chiral symmetry
breaking and confinement in the dual gauge theory.Comment: Based on I.R.K.'s lectures at the Les Houches Summer School Session
76, ``Gravity, Gauge Theories, and Strings'', August 2001, 42 pages, v2:
clarifications and references adde
- …
