23 research outputs found

    Inspiratory threshold loading reduces lipoperoxidation in obese and normal-weight subjects

    Get PDF
    Obesity is related to increased oxidative stress. Although low-intensity physical exercise reduces oxidative stress, obese subjects may show exercise intolerance. For these subjects, inspiratory threshold loading could be an alternative tool to reduce oxidative stress. We investigated the effects of inspiratory threshold loading on biomarkers of oxidative stress in obese and normal-weight subjects. Twenty obese (31.4 ± 6 years old, 10 men and 10 women, 37.5 ± 4.7 kg/m2) and 20 normal-weight (29.4 ± 8 years old, 10 men and 10 women, 23.2 ± 1.5 kg/m2) subjects matched for age and gender participated in the study. Maximal inspiratory pressure (MIP) was assessed by a pressure transducer. Blood sampling was performed before and after loading and control protocols to assess thiobarbituric acid reactive substances (TBARS), protein carbonylation, and reduced glutathione. Inspiratory threshold loading was performed at 60% MIP and maintained until task failure. The 30-min control protocol was performed at 0 cmH2O. Our results demonstrated that inspiratory threshold loading reduced TBARS across time in obese (6.21 ± 2.03 to 4.91 ± 2.14 nmol MDA/ml) and normal-weight subjects (5.60 ± 3.58 to 4.69 ± 2.80 nmol MDA/ml; p = 0.007), but no change was observed in protein carbonyls and glutathione in both groups. The control protocol showed no significant changes in TBARS and protein carbonyls. However, reduced glutathione was increased across time in both groups (obese: from 0.50 ± 0.37 to 0.56 ± 0.35 μmol GSH/ml; normal-weight: from 0.61 ± 0.11 to 0.81 ± 0.23 μmol GSH/ml; p = 0.002). These findings suggest that inspiratory threshold loading could be potentially used as an alternative tool to reduce oxidative stress in both normal-weight and obese individuals

    Efeitos do treinamento muscular inspiratório em universitários tabagistas e não tabagistas

    Get PDF
    O hábito de fumar pode reduzir a capacidade aeróbica, aumentar a resistência ao fluxo aéreo e afetar a função dos músculos respiratórios. O objetivo deste estudo foi comparar os efeitos do Treinamento Muscular Inspiratório (TMI) entre dois grupos: tabagistas e não tabagistas. Participaram 44 voluntários universitários, divididos em dois grupos: tabagistas (GT), composto por 20 indivíduos (25,60±7,01 anos) e não tabagistas, constituindo o Grupo Controle (GC), composto por 24 voluntários (24,08±7,52 anos). Ambos os grupos foram submetidos ao TMI, por meio do uso do manovacuômetro aneroide, com duração de 6 semanas, sendo 3 sessões semanais, totalizando 18 sessões. Os resultados mostraram diferença estatisticamente significativa (p<0,05) pós-TMI no GC para as variáveis: Pressão Inspiratória Máxima (PImáx), Pico de Fluxo Expiratório (PFE), Pressão Arterial Média ao repouso (PAM pré-TC6) e Teste de Caminhada de Seis Minutos (TC6). No GT, houve diferença estatisticamente significativa pós-TMI para as variáveis: PImáx, PFE, TC6 e saturação periférica de oxigênio após o TC6 (SpO2 pós-imediata). A comparação das médias das variáveis entre GT e GC mostrou diferença estatisticamente significativa no pós-TMI para as variáveis PImáx e PFE. A variável TC6 não apresentou diferença estatisticamente significativa. Conclui-se que o TMI proporcionou um aumento significativo da força muscular inspiratória, melhora da função pulmonar e melhora do desempenho físico nos indivíduos estudados

    Are glucose levels, glucose variability and autonomic control influenced by inspiratory muscle exercise in patients with type 2 diabetes? Study protocol for a randomized controlled trial

    Get PDF
    BACKGROUND: Physical exercise reduces glucose levels and glucose variability in patients with type 2 diabetes. Acute inspiratory muscle exercise has been shown to reduce these parameters in a small group of patients with type 2 diabetes, but these results have yet to be confirmed in a well-designed study. The aim of this study is to investigate the effect of acute inspiratory muscle exercise on glucose levels, glucose variability, and cardiovascular autonomic function in patients with type 2 diabetes. METHODS/DESIGN: This study will use a randomized clinical trial crossover design. A total of 14 subjects will be recruited and randomly allocated to two groups to perform acute inspiratory muscle loading at 2 % of maximal inspiratory pressure (PImax, placebo load) or 60 % of PImax (experimental load). DISCUSSION: Inspiratory muscle training could be a novel exercise modality to be used to decrease glucose levels and glucose variability. TRIAL REGISTRATION: ClinicalTrials.gov NCT02292810

    Inspiratory threshold loading reduces lipoperoxidation in obese and normal-weight subjects

    Full text link
    Obesity is related to increased oxidative stress. Although low-intensity physical exercise reduces oxidative stress, obese subjects may show exercise intolerance. For these subjects, inspiratory threshold loading could be an alternative tool to reduce oxidative stress. We investigated the effects of inspiratory threshold loading on biomarkers of oxidative stress in obese and normal-weight subjects. Twenty obese (31.4 ± 6 years old, 10 men and 10 women, 37.5 ± 4.7 kg/m2) and 20 normal-weight (29.4 ± 8 years old, 10 men and 10 women, 23.2 ± 1.5 kg/m2) subjects matched for age and gender participated in the study. Maximal inspiratory pressure (MIP) was assessed by a pressure transducer. Blood sampling was performed before and after loading and control protocols to assess thiobarbituric acid reactive substances (TBARS), protein carbonylation, and reduced glutathione. Inspiratory threshold loading was performed at 60% MIP and maintained until task failure. The 30-min control protocol was performed at 0 cmH2O. Our results demonstrated that inspiratory threshold loading reduced TBARS across time in obese (6.21 ± 2.03 to 4.91 ± 2.14 nmol MDA/ml) and normal-weight subjects (5.60 ± 3.58 to 4.69 ± 2.80 nmol MDA/ml; p = 0.007), but no change was observed in protein carbonyls and glutathione in both groups. The control protocol showed no significant changes in TBARS and protein carbonyls. However, reduced glutathione was increased across time in both groups (obese: from 0.50 ± 0.37 to 0.56 ± 0.35 μmol GSH/ml; normal-weight: from 0.61 ± 0.11 to 0.81 ± 0.23 μmol GSH/ml; p = 0.002). These findings suggest that inspiratory threshold loading could be potentially used as an alternative tool to reduce oxidative stress in both normal-weight and obese individuals.</jats:p
    corecore