145 research outputs found
Guidance and Best Practices for Reestablishment of Non-Emergent Care in Nuclear Cardiology Laboratories During the Coronavirus Disease 2019 (COVID-19) Pandemic : an Information Statement from ASNC, IAEA, and SNMMI
Comparison of long-term mortality risk following normal exercise vs adenosine myocardial perfusion SPECT
A higher frequency of clinical events has been observed in patients undergoing pharmacological vs exercise myocardial perfusion single-photon emission computed tomography (SPECT). While this difference is attributed to greater age and co-morbidities, it is not known whether these tests also differ in prognostic ability among patients with similar clinical profiles.
We assessed all-cause mortality rates in 6,069 patients, followed for 10.2 ± 1.7 years after undergoing exercise or adenosine SPECT. We employed propensity analysis to match exercise and adenosine subgroups by age, gender, symptoms, and coronary risk factors. Within our propensity-matched cohorts, adenosine patients had an annualized mortality rate event rates that was more than twice that of exercise patients (3.9% vs 1.6%, P < .0001). Differences in mortality persisted among age groups, including those <55 years old. In the exercise cohort, mortality was inversely related to exercise duration, with comparable mortality noted for patients exercising <3 min and those undergoing adenosine testing.
Among patients with normal stress SPECT tests, those undergoing adenosine testing manifest a mortality rate that is substantially higher than that observed among adequately exercising patients, but comparable to that observed among very poorly exercising patients. This elevated risk underscores an important challenge for managing patients undergoing pharmacological stress testing
Amyloidogenic Regions and Interaction Surfaces Overlap in Globular Proteins Related to Conformational Diseases
Protein aggregation underlies a wide range of human disorders. The polypeptides involved in these pathologies might be intrinsically unstructured or display a defined 3D-structure. Little is known about how globular proteins aggregate into toxic assemblies under physiological conditions, where they display an initially folded conformation. Protein aggregation is, however, always initiated by the establishment of anomalous protein-protein interactions. Therefore, in the present work, we have explored the extent to which protein interaction surfaces and aggregation-prone regions overlap in globular proteins associated with conformational diseases. Computational analysis of the native complexes formed by these proteins shows that aggregation-prone regions do frequently overlap with protein interfaces. The spatial coincidence of interaction sites and aggregating regions suggests that the formation of functional complexes and the aggregation of their individual subunits might compete in the cell. Accordingly, single mutations affecting complex interface or stability usually result in the formation of toxic aggregates. It is suggested that the stabilization of existing interfaces in multimeric proteins or the formation of new complexes in monomeric polypeptides might become effective strategies to prevent disease-linked aggregation of globular proteins
Structure of MHC class I-like MILL2 reveals heparan-sulfate binding and interdomain flexibility
The MILL family, composed of MILL1 and MILL2, is a group of nonclassical MHC class I molecules that occur in some orders of mammals. It has been reported that mouse MILL2 is involved in wound healing; however, the molecular mechanisms remain unknown. Here, we determine the crystal structure of MILL2 at 2.15 Å resolution, revealing an organization similar to classical MHC class I. However, the α1-α2 domains are not tightly fixed on the α3-β2m domains, indicating unusual interdomain flexibility. The groove between the two helices in the α1-α2 domains is too narrow to permit ligand binding. Notably, an unusual basic patch on the α3 domain is involved in the binding to heparan sulfate which is essential for MILL2 interactions with fibroblasts. These findings suggest that MILL2 has a unique structural architecture and physiological role, with binding to heparan sulfate proteoglycans on fibroblasts possibly regulating cellular recruitment in biological events
2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease
The recommendations listed in this document are, whenever possible, evidence based. An extensive evidence review was conducted as the document was compiled through December 2008. Repeated literature searches were performed by the guideline development staff and writing committee members as new issues were considered. New clinical trials published in peer-reviewed journals and articles through December 2011 were also reviewed and incorporated when relevant. Furthermore, because of the extended development time period for this guideline, peer review comments indicated that the sections focused on imaging technologies required additional updating, which occurred during 2011. Therefore, the evidence review for the imaging sections includes published literature through December 2011
- …
