175 research outputs found
Syntrophic propionate-oxidizing bacteria in methanogenic systems
This review summarizes discoveries in syntrophic propionate degradation research and reveals intriguing metabolic capabilities, mechanisms of cooperation and environmentally driven kinetics by taxonomically distinct microorganisms that are important for biotechnological applications and biogenic methane emissions.The mutual nutritional cooperation underpinning syntrophic propionate degradation provides a scant amount of energy for the microorganisms involved, so propionate degradation often acts as a bottleneck in methanogenic systems. Understanding the ecology, physiology and metabolic capacities of syntrophic propionate-oxidizing bacteria (SPOB) is of interest in both engineered and natural ecosystems, as it offers prospects to guide further development of technologies for biogas production and biomass-derived chemicals, and is important in forecasting contributions by biogenic methane emissions to climate change. SPOB are distributed across different phyla. They can exhibit broad metabolic capabilities in addition to syntrophy (e.g. fermentative, sulfidogenic and acetogenic metabolism) and demonstrate variations in interplay with cooperating partners, indicating nuances in their syntrophic lifestyle. In this review, we discuss distinctions in gene repertoire and organization for the methylmalonyl-CoA pathway, hydrogenases and formate dehydrogenases, and emerging facets of (formate/hydrogen/direct) electron transfer mechanisms. We also use information from cultivations, thermodynamic calculations and omic analyses as the basis for identifying environmental conditions governing propionate oxidation in various ecosystems. Overall, this review improves basic and applied understanding of SPOB and highlights knowledge gaps, hopefully encouraging future research and engineering on propionate metabolism in biotechnological processes
Formate-Dependent Microbial Conversion of CO2 and the Dominant Pathways of Methanogenesis in Production Water of High-temperature Oil Reservoirs Amended with Bicarbonate
published_or_final_versio
The zebrafish genome encodes the largest vertebrate repertoire of functional aquaporins with dual paralogy and substrate specificities similar to mammals
Background: Aquaporins are integral membrane proteins that facilitate the transport of water and small solutes
across cell membranes. These proteins are vital for maintaining water homeostasis in living organisms. In mammals,
thirteen aquaporins (AQP0-12) have been characterized, but in lower vertebrates, such as fish, the diversity,
structure and substrate specificity of these membrane channel proteins are largely unknown.
Results: The screening and isolation of transcripts from the zebrafish (Danio rerio) genome revealed eighteen
sequences structurally related to the four subfamilies of tetrapod aquaporins, i.e., aquaporins (AQP0, -1 and -4),
water and glycerol transporters or aquaglyceroporins (Glps; AQP3 and AQP7-10), a water and urea transporter
(AQP8), and two unorthodox aquaporins (AQP11 and -12). Phylogenetic analyses of nucleotide and deduced amino
acid sequences demonstrated dual paralogy between teleost and human aquaporins. Three of the duplicated
zebrafish isoforms have unlinked loci, two have linked loci, while DrAqp8 was found in triplicate across two
chromosomes. Genomic sequencing, structural analysis, and maximum likelihood reconstruction, further revealed
the presence of a putative pseudogene that displays hybrid exons similar to tetrapod AQP5 and -1. Ectopic
expression of the cloned transcripts in Xenopus laevis oocytes demonstrated that zebrafish aquaporins and Glps
transport water or water, glycerol and urea, respectively, whereas DrAqp11b and -12 were not functional in
oocytes. Contrary to humans and some rodents, intrachromosomal duplicates of zebrafish AQP8 were water and
urea permeable, while the genomic duplicate only transported water. All aquaporin transcripts were expressed in
adult tissues and found to have divergent expression patterns. In some tissues, however, redundant expression of
transcripts encoding two duplicated paralogs seems to occur.
Conclusion: The zebrafish genome encodes the largest repertoire of functional vertebrate aquaporins with dual
paralogy to human isoforms. Our data reveal an early and specific diversification of these integral membrane
proteins at the root of the crown-clade of Teleostei. Despite the increase in gene copy number, zebrafish
aquaporins mostly retain the substrate specificity characteristic of the tetrapod counterparts. Based upon the
integration of phylogenetic, genomic and functional data we propose a new classification for the piscine
aquaporin superfamily
Phylogenetic diversity and community structure of Planctomycetota from plant biomass-rich environments
Biomass-rich environments host diverse microbial communities that contribute to the degradation and recycling of organic matter. Understanding the community structure within these habitats is essential for elucidating the ecological roles and metabolic capacities of specific microbial groups. Here, we conducted an analysis of biomass-rich environments including diverse soil types, sediments, anaerobic digesters, termite guts, termite nests and other decaying biomasses, to explore the phylogenetic diversity and community structure of the Planctomycetota phylum, using short-read 16S rRNA gene amplicon sequencing. All sampled environments showed presence of Planctomycetota, with relative abundance ranging from nearly absent in animal manure to approximately 10% in soils. Across all samples, virtually 1,900 operational taxonomic units (OTUs) were identified, classified into diverse classes within Planctomycetota. Planctomycetotal phylogenetic diversity was highest in soils and sediments, while termite guts, exhibiting the lowest phylogenetic diversity, were dominated by a few core OTUs shared across different termite species. Notably, a single OTU, closely matching the 16S rRNA gene sequence of the Singulisphaera genus, was detected in all environments, though with relative abundance ranging from only a few reads to over 6% of the planctomycetotal community. Four environments such as soil, sediment, termite nest and decaying biomasses showed similar community structure with predominant genera such as Tepidisphaera, Telmatocola, and distantly related to Thermogutta, and Anatilimnicola. However, among these environments, weighted UniFrac analysis revealed that planctomycetotal communities in termite nests exhibited greater phylogenetic relatedness. Termite gut communities were the most divergent, followed by those in anaerobic digesters, where OTUs assigned to Anaerobaca and Anaerohalosphaera were the most abundant. Termite gut and phytoplankton bloom samples were dominated by OTUs affiliated with Pirellulales, suggesting their host-specific associations. Animal manure showed the presence of Planctomycetota, with 25% of detected OTUs not recognized by the SILVA database, possibly representing a novel, host-specific lineage distantly related to the Pirellulales order
Recommended from our members
Metaproteome analysis reveals that syntrophy, competition, and phage-host interaction shape microbial communities in biogas plants
Background: In biogas plants, complex microbial communities produce methane and carbon dioxide by anaerobic digestion of biomass. For the characterization of the microbial functional networks, samples of 11 reactors were analyzed using a high-resolution metaproteomics pipeline. Results: Examined methanogenesis archaeal communities were either mixotrophic or strictly hydrogenotrophic in syntrophy with bacterial acetate oxidizers. Mapping of identified metaproteins with process steps described by the Anaerobic Digestion Model 1 confirmed its main assumptions and also proposed some extensions such as syntrophic acetate oxidation or fermentation of alcohols. Results indicate that the microbial communities were shaped by syntrophy as well as competition and phage-host interactions causing cell lysis. For the families Bacillaceae, Enterobacteriaceae, and Clostridiaceae, the number of phages exceeded up to 20-fold the number of host cells. Conclusion: Phage-induced cell lysis might slow down the conversion of substrates to biogas, though, it could support the growth of auxotrophic microbes by cycling of nutrients. © 2019 The Author(s)
Metaproteome analysis reveals that syntrophy, competition, and phage-host interaction shape microbial communities in biogas plants
Background: In biogas plants, complex microbial communities produce methane and carbon dioxide by anaerobic digestion of biomass. For the characterization of the microbial functional networks, samples of 11 reactors were analyzed using a high-resolution metaproteomics pipeline. Results: Examined methanogenesis archaeal communities were either mixotrophic or strictly hydrogenotrophic in syntrophy with bacterial acetate oxidizers. Mapping of identified metaproteins with process steps described by the Anaerobic Digestion Model 1 confirmed its main assumptions and also proposed some extensions such as syntrophic acetate oxidation or fermentation of alcohols. Results indicate that the microbial communities were shaped by syntrophy as well as competition and phage-host interactions causing cell lysis. For the families Bacillaceae, Enterobacteriaceae, and Clostridiaceae, the number of phages exceeded up to 20-fold the number of host cells. Conclusion: Phage-induced cell lysis might slow down the conversion of substrates to biogas, though, it could support the growth of auxotrophic microbes by cycling of nutrients. © 2019 The Author(s)
A holobiont approach towards polysaccharide degradation by the highly compartmentalised gut system of the soil-feeding higher termite Labiotermes labralis.
peer reviewed[en] BACKGROUND: Termites are among the most successful insects on Earth and can feed on a broad range of organic matter at various stages of decomposition. The termite gut system is often referred to as a micro-reactor and is a complex structure consisting of several components. It includes the host, its gut microbiome and fungal gardens, in the case of fungi-growing higher termites. The digestive tract of soil-feeding higher termites is characterised by radial and axial gradients of physicochemical parameters (e.g. pH, O2 and H2 partial pressure), and also differs in the density and structure of residing microbial communities. Although soil-feeding termites account for 60% of the known termite species, their biomass degradation strategies are far less known compared to their wood-feeding counterparts.
RESULTS: In this work, we applied an integrative multi-omics approach for the first time at the holobiont level to study the highly compartmentalised gut system of the soil-feeding higher termite Labiotermes labralis. We relied on 16S rRNA gene community profiling, metagenomics and (meta)transcriptomics to uncover the distribution of functional roles, in particular those related to carbohydrate hydrolysis, across different gut compartments and among the members of the bacterial community and the host itself. We showed that the Labiotermes gut was dominated by members of the Firmicutes phylum, whose abundance gradually decreased towards the posterior segments of the hindgut, in favour of Bacteroidetes, Proteobacteria and Verrucomicrobia. Contrary to expectations, we observed that L. labralis gut microbes expressed a high diversity of carbohydrate active enzymes involved in cellulose and hemicelluloses degradation, making the soil-feeding termite gut a unique reservoir of lignocellulolytic enzymes with considerable biotechnological potential. We also evidenced that the host cellulases have different phylogenetic origins and structures, which is possibly translated into their different specificities towards cellulose. From an ecological perspective, we could speculate that the capacity to feed on distinct polymorphs of cellulose retained in soil might have enabled this termite species to widely colonise the different habitats of the Amazon basin.
CONCLUSIONS: Our study provides interesting insights into the distribution of the hydrolytic potential of the highly compartmentalised higher termite gut. The large number of expressed enzymes targeting the different lignocellulose components make the Labiotermes worker gut a relevant lignocellulose-valorising model to mimic by biomass conversion industries.Explor‑ ing the higher termite lignocellulolytic system to optimise the conversion of biomass into energy and useful platform molecule
Genome-wide transcriptional analysis suggests hydrogenase- and nitrogenase-mediated hydrogen production in Clostridium butyricum CWBI 1009
[en] Background: Molecular hydrogen, given its pollution-free combustion, has great potential to replace fossil fuels infuture transportation and energy production. However, current industrial hydrogen production processes, such assteam reforming of methane, contribute significantly to the greenhouse effect. Therefore alternative methods, inparticular the use of fermentative microorganisms, have attracted scientific interest in recent years. However thelow overall yield obtained is a major challenge in biological H2 production. Thus, a thorough and detailedunderstanding of the relationships between genome content, gene expression patterns, pathway utilisation andmetabolite synthesis is required to optimise the yield of biohydrogen production pathways.Results: In this study transcriptomic and proteomic analyses of the hydrogen-producing bacterium Clostridiumbutyricum CWBI 1009 were carried out to provide a biomolecular overview of the changes that occur when themetabolism shifts to H2 production. The growth, H2-production, and glucose-fermentation profiles were monitoredin 20 L batch bioreactors under unregulated-pH and fixed-pH conditions (pH 7.3 and 5.2). Conspicuous differenceswere observed in the bioreactor performances and cellular metabolisms for all the tested metabolites, and theywere pH dependent. During unregulated-pH glucose fermentation increased H2 production was associated withconcurrent strong up-regulation of the nitrogenase coding genes. However, no such concurrent up-regulation ofthe [FeFe] hydrogenase genes was observed. During the fixed pH 5.2 fermentation, by contrast, the expressionlevels for the [FeFe] hydrogenase coding genes were higher than during the unregulated-pH fermentation, whilethe nitrogenase transcripts were less abundant. The overall results suggest, for the first time, that environmentalfactors may determine whether H2 production in C. butyricum CWBI 1009 is mediated by the hydrogenases and/orthe nitrogenase.Conclusions: This work, contributing to the field of dark fermentative hydrogen production, provides amultidisciplinary approach for the investigation of the processes involved in the molecular H2 metabolism ofclostridia. In addition, it lays the groundwork for further optimisation of biohydrogen production pathways basedon genetic engineering techniques.info:eu-repo/semantics/publishe
Isolation and characterization of a new [FeFe]-hydrogenase from Clostridium perfringens
© 2015 International Union of Biochemistry and Molecular Biology, Inc. This paper reports the first characterization of an [FeFe]-hydrogenase from a Clostridium perfringens strain previously isolated in our laboratory from a pilot-scale bio-hydrogen plant that efficiently produces H2 from waste biomasses. On the basis of sequence analysis, the enzyme is a monomer formed by four domains hosting various iron–sulfur centres involved in electron transfer and the catalytic center H-cluster. After recombinant expression in Escherichia coli, the purified protein catalyzes H2 evolution at high rate of 1645±16s−1. The optimal conditions for catalysis are in the pH range 6.5–8.0 and at the temperature of 50°C. EPR spectroscopy showed that the H-cluster of the oxidized enzyme displays a spectrum coherent with the Hox state, whereas the CO-inhibited enzyme has a spectrum coherent with the Hox-CO state. FTIR spectroscopy showed that the purified enzyme is composed of a mixture of redox states, with a prevalence of the Hox; upon reduction with H2, vibrational modes assigned to the Hred state were more abundant, whereas binding of exogenous CO resulted in a spectrum assigned to the Hox-CO state. The spectroscopic features observed are similar to those of the [FeFe]-hydrogenases class, but relevant differences were observed given the different protein environment hosting the H-cluster
Figure S5: vConTACT family of tools on CyVerse
Taxonomic classification of archaeal and bacterial viruses is challenging, yet also fundamental for developing a predictive understanding of microbial ecosystems. Recent identification of hundreds of thousands of new viral genomes and genome fragments, whose hosts remain unknown, requires a paradigm shift away from traditional classification approaches and towards the use of genomes for taxonomy. Here we revisited the use of genomes and their protein content as a means for developing a viral taxonomy for bacterial and archaeal viruses. A network-based analytic was evaluated and benchmarked against authority-accepted taxonomic assignments and found to be largely concordant. Exceptions were manually examined and found to represent areas of viral genome ‘sequence space’ that are under-sampled or prone to excessive genetic exchange. While both cases are poorly resolved by genome-based taxonomic approaches, the former will improve as viral sequence space is better sampled and the latter are uncommon. Finally, given the largely robust taxonomic capabilities of this approach, we sought to enable researchers to easily and systematically classify new viruses. Thus, we established a tool, vConTACT, as an app at iVirus, where it operates as a fast, highly scalable, user-friendly app within the free and powerful CyVerse cyberinfrastructure
- …
