312 research outputs found

    Longitudinal study of computerised cardiotocography in early fetal growth restriction.

    Get PDF
    OBJECTIVES: To explore if in early fetal growth restriction (FGR) the longitudinal pattern of short-term fetal heart rate (FHR) variation (STV) can be used for identifying imminent fetal distress and if abnormalities of FHR registration associate with two-year infant outcome. METHODS: The original TRUFFLE study assessed if in early FGR the use of ductus venosus Doppler pulsatility index (DVPI), in combination with a safety-net of very low STV and / or recurrent decelerations, could improve two-year infant survival without neurological impairment in comparison to computerised cardiotocography (cCTG) with STV calculation only. For this secondary analysis we selected women, who delivered before 32 weeks, and who had consecutive STV data for more than 3 days before delivery, and known infant two-year outcome data. Women who received corticosteroids within 3 days of delivery were excluded. Individual regression line algorithms of all STV values except the last one were calculated. Life table analysis and Cox regression analysis were used to calculate the day by day risk for a low STV or very low STV and / or FHR decelerations (DVPI group safety-net) and to assess which parameters were associated to this risk. Furthermore, it was assessed if STV pattern, lowest STV value or recurrent FHR decelerations were associated with two-year infant outcome. RESULTS: One hundred and fourty-nine women matched the inclusion criteria. Using the individual STV regression lines prediction of a last STV below the cCTG-group cut-off had a sensitivity of 0.42 and specificity of 0.91. For each day after inclusion the median risk for a low STV(cCTG criteria) was 4% (Interquartile range (IQR) 2% to 7%) and for a very low STV and / or recurrent decelerations (DVPI safety-net criteria) 5% (IQR 4 to 7%). Measures of STV pattern, fetal Doppler (arterial or venous), birthweight MoM or gestational age did not improve daily risk prediction usefully. There was no association of STV regression coefficients, a last low STV or /and recurrent decelerations with short or long term infant outcomes. CONCLUSION: The TRUFFLE study showed that a strategy of DVPI monitoring with a safety-net delivery indication of very low STV and / or recurrent decelerations could increase infant survival without neurological impairment at two years. This post-hoc analysis demonstrates that in early FGR the day by day risk of an abnormal cCTG as defined by the DVPI protocol safety-net criteria is 5%, and that prediction of this is not possible. This supports the rationale for cCTG monitoring more often than daily in these high-risk fetuses. Low STV and/or recurrent decelerations were not associated with adverse infant outcome and it appears safe to delay intervention until such abnormalities occur, as long as DVPI is in the normal range

    Search for black holes and other new phenomena in high-multiplicity final states in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Search for heavy resonances decaying into a vector boson and a Higgs boson in final states with charged leptons, neutrinos, and b quarks

    Get PDF
    Peer reviewe

    Search for high-mass diphoton resonances in proton-proton collisions at 13 TeV and combination with 8 TeV search

    Get PDF
    Peer reviewe

    Measurement of the mass difference between top quark and antiquark in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for leptophobic Z ' bosons decaying into four-lepton final states in proton-proton collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Assessing the detection of floating plastic litter with advanced remote sensing technologies in a hydrodynamic test facility

    Get PDF
    Remote sensing technologies have the potential to support monitoring of floating plastic litter in aquatic environments. An experimental campaign was carried out in a large-scale hydrodynamic test facility to explore the detectability of floating plastics in ocean waves, comparing and contrasting different microwave and optical remote sensing technologies. The extensive experiments revealed that detection of plastics was feasible with microwave measurement techniques using X and Ku-bands with VV polarization at a plastic threshold concentration of 1 item/m2 or 1–10 g/m2. The optical measurements further revealed that spectral and polarization properties in the visible and infrared spectrum had diagnostic information unique to the floating plastics. This assessment presents a crucial step towards enabling the detection of aquatic plastics using advanced remote sensing technologies. We demonstrate that remote sensing has the potential for global targeting of plastic litter hotspots, which is needed for supporting effective clean-up efforts and scientific evidence-based policy making
    corecore