1,297 research outputs found

    Approach to accurately measuring the speed of optical precursors

    Get PDF
    Precursors can serve as a bound on the speed of information with dispersive medium. We propose a method to identify the speed of optical precursors using polarization-based interference in a solid-state device, which can bound the accuracy of the precursors' speed to less than 10410^{-4} with conventional experimental conditions. Our proposal may have important implications for optical communications and fast information processing.Comment: 4 pages, 4 figure

    Experimental detection of quantum coherent evolution through the violation of Leggett-Garg-type inequalities

    Full text link
    We discuss the use of inequalities of the Leggett-Garg type (LGtI) to witness quantum coherence and present the first experimental violation of this type of inequalities using a light-matter interfaced system. By separately benchmarking the Markovian character of the evolution and the translational invariance of the conditional probabilities, the observed violation of a LGtI is attributed to the quantum coherent character of the process. These results provide a general method to benchmark `quantumness' when the absence of memory effects can be independently certified and confirm the persistence of quantum coherent features within systems of increasing complexity.Comment: published version, including supplementary materia

    Phase Compensation Enhancement of Photon Pair Entanglement Generated from Biexciton Decays in Quantum Dots

    Full text link
    Exciton fine-structure splittings within quantum dots introduce phase differences between the two biexciton decay paths that greatly reduce the entanglement of photon pairs generated via biexciton recombination. We analyze this problem in the frequency domain and propose a practicable method to compensate the phase difference by inserting a spatial light modulator, which substantially improves the entanglement of the photon pairs without any loss.Comment: 4 pages, 3 figure

    Capture on High Curvature Region: Aggregation of Colloidal Particle Bound to Giant Phospholipid Vesicles

    Full text link
    A very recent observation on the membrane mediated attraction and ordered aggregation of colloidal particles bound to giant phospholipid vesicles (I. Koltover, J. O. R\"{a}dler, C. R. Safinya, Phys. Rev. Lett. {\bf 82}, 1991(1999)) is investigated theoretically within the frame of Helfrich curvature elasticity theory of lipid bilayer fluid membrane. Since the concave or waist regions of the vesicle possess the highest local bending energy density, the aggregation of colloidal beads on these places can reduce the elastic energy in maximum. Our calculation shows that a bead in the concave region lowers its energy 20kBT\sim 20 k_B T. For an axisymmetrical dumbbell vesicle, the local curvature energy density along the waist is equally of maximum, the beads can thus be distributed freely with varying separation distance.Comment: 12 pages, 2 figures. REVte

    Realization of reliable solid-state quantum memory for photonic polarization-qubit

    Full text link
    Faithfully storing an unknown quantum light state is essential to advanced quantum communication and distributed quantum computation applications. The required quantum memory must have high fidelity to improve the performance of a quantum network. Here we report the reversible transfer of photonic polarization states into collective atomic excitation in a compact solid-state device. The quantum memory is based on an atomic frequency comb (AFC) in rare-earth ion doped crystals. We obtain up to 0.998 process fidelity for the storage and retrieval process of single-photon-level coherent pulse. This reliable quantum memory is a crucial step toward quantum networks based on solid-state devices.Comment: Updated version of PRL paper, Bandwidth:100MHz, Efficiency: 20%@50n

    Spheres and Prolate and Oblate Ellipsoids from an Analytical Solution of Spontaneous Curvature Fluid Membrane Model

    Full text link
    An analytic solution for Helfrich spontaneous curvature membrane model (H. Naito, M.Okuda and Ou-Yang Zhong-Can, Phys. Rev. E {\bf 48}, 2304 (1993); {\bf 54}, 2816 (1996)), which has a conspicuous feature of representing the circular biconcave shape, is studied. Results show that the solution in fact describes a family of shapes, which can be classified as: i) the flat plane (trivial case), ii) the sphere, iii) the prolate ellipsoid, iv) the capped cylinder, v) the oblate ellipsoid, vi) the circular biconcave shape, vii) the self-intersecting inverted circular biconcave shape, and viii) the self-intersecting nodoidlike cylinder. Among the closed shapes (ii)-(vii), a circular biconcave shape is the one with the minimum of local curvature energy.Comment: 11 pages, 11 figures. Phys. Rev. E (to appear in Sept. 1999

    Experimental observation of anomalous trajectories of single photons

    Full text link
    A century after its conception, quantum mechanics still hold surprises that contradict many "common sense" notions. The contradiction is especially sharp in case one consider trajectories of truly quantum objects such as single photons. From a classical point of view, trajectories are well defined for particles, but not for waves. The wave-particle duality forces a breakdown of this dichotomy and quantum mechanics resolves this in a remarkable way: Trajectories can be well defined, but they are utterly different from classical trajectories. Here, we give an operational definition to the trajectory of a single photon by introducing a novel technique to mark its path using its spectral composition. The method demonstrates that the frequency degree of freedom can be used as a bona fide quantum measurement device (meter). The analysis of a number of setups, using our operational definition, leads to anomalous trajectories which are non-continuous and in some cases do not even connect the source of the photon to where it is detected. We carried out an experimental demonstration of these anomalous trajectories using a nested interferometer. We show that the Two-state vector formalism provides a simple explanation for the results
    corecore