2,304 research outputs found

    What is...a Curvelet?

    Get PDF
    Energized by the success of wavelets, the last two decades saw the rapid development of a new field, computational harmonic analysis, which aims to develop new systems for effectively representing phenomena of scientific interest. The curvelet transform is a recent addition to the family of mathematical tools this community enthusiastically builds up. In short, this is a new multiscale transform with strong directional character in which elements are highly anisotropic at fine scales, with effective support shaped according to the parabolic scaling principle length^2 ~ width

    Compressed Sensing with off-axis frequency-shifting holography

    Get PDF
    This work reveals an experimental microscopy acquisition scheme successfully combining Compressed Sensing (CS) and digital holography in off-axis and frequency-shifting conditions. CS is a recent data acquisition theory involving signal reconstruction from randomly undersampled measurements, exploiting the fact that most images present some compact structure and redundancy. We propose a genuine CS-based imaging scheme for sparse gradient images, acquiring a diffraction map of the optical field with holographic microscopy and recovering the signal from as little as 7% of random measurements. We report experimental results demonstrating how CS can lead to an elegant and effective way to reconstruct images, opening the door for new microscopy applications.Comment: vol 35, pp 871-87

    A fast and accurate first-order algorithm for compressed sensing

    Get PDF
    This paper introduces a new, fast and accurate algorithm for solving problems in the area of compressed sensing, and more generally, in the area of signal and image reconstruction from indirect measurements. This algorithm is inspired by recent progress in the development of novel first-order methods in convex optimization, most notably Nesterov’s smoothing technique. In particular, there is a crucial property thatmakes thesemethods extremely efficient for solving compressed sensing problems. Numerical experiments show the promising performance of our method to solve problems which involve the recovery of signals spanning a large dynamic range

    Compressive Phase Retrieval From Squared Output Measurements Via Semidefinite Programming

    Full text link
    Given a linear system in a real or complex domain, linear regression aims to recover the model parameters from a set of observations. Recent studies in compressive sensing have successfully shown that under certain conditions, a linear program, namely, l1-minimization, guarantees recovery of sparse parameter signals even when the system is underdetermined. In this paper, we consider a more challenging problem: when the phase of the output measurements from a linear system is omitted. Using a lifting technique, we show that even though the phase information is missing, the sparse signal can be recovered exactly by solving a simple semidefinite program when the sampling rate is sufficiently high, albeit the exact solutions to both sparse signal recovery and phase retrieval are combinatorial. The results extend the type of applications that compressive sensing can be applied to those where only output magnitudes can be observed. We demonstrate the accuracy of the algorithms through theoretical analysis, extensive simulations and a practical experiment.Comment: Parts of the derivations have submitted to the 16th IFAC Symposium on System Identification, SYSID 2012, and parts to the 51st IEEE Conference on Decision and Control, CDC 201

    Sparse signal and image recovery from Compressive Samples

    Get PDF
    In this paper we present an introduction to Compressive Sampling (CS), an emerging model-based framework for data acquisition and signal recovery based on the premise that a signal having a sparse representation in one basis can be reconstructed from a small number of measurements collected in a second basis that is incoherent with the first. Interestingly, a random noise-like basis will suffice for the measurement process. We will overview the basic CS theory, discuss efficient methods for signal reconstruction, and highlight applications in medical imaging

    An Introduction To Compressive Sampling [A sensing/sampling paradigm that goes against the common knowledge in data acquisition]

    Get PDF
    This article surveys the theory of compressive sampling, also known as compressed sensing or CS, a novel sensing/sampling paradigm that goes against the common wisdom in data acquisition. CS theory asserts that one can recover certain signals and images from far fewer samples or measurements than traditional methods use. To make this possible, CS relies on two principles: sparsity, which pertains to the signals of interest, and incoherence, which pertains to the sensing modality. Our intent in this article is to overview the basic CS theory that emerged in the works [1]–[3], present the key mathematical ideas underlying this theory, and survey a couple of important results in the field. Our goal is to explain CS as plainly as possible, and so our article is mainly of a tutorial nature. One of the charms of this theory is that it draws from various subdisciplines within the applied mathematical sciences, most notably probability theory. In this review, we have decided to highlight this aspect and especially the fact that randomness can — perhaps surprisingly — lead to very effective sensing mechanisms. We will also discuss significant implications, explain why CS is a concrete protocol for sensing and compressing data simultaneously (thus the name), and conclude our tour by reviewing important applications

    Highly Robust Error Correction by Convex Programming

    Get PDF
    This paper discusses a stylized communications problem where one wishes to transmit a real-valued signal x ∈ ℝ^n (a block of n pieces of information) to a remote receiver. We ask whether it is possible to transmit this information reliably when a fraction of the transmitted codeword is corrupted by arbitrary gross errors, and when in addition, all the entries of the codeword are contaminated by smaller errors (e.g., quantization errors). We show that if one encodes the information as Ax where A ∈ ℝ^(m x n) (m ≥ n) is a suitable coding matrix, there are two decoding schemes that allow the recovery of the block of n pieces of information x with nearly the same accuracy as if no gross errors occurred upon transmission (or equivalently as if one had an oracle supplying perfect information about the sites and amplitudes of the gross errors). Moreover, both decoding strategies are very concrete and only involve solving simple convex optimization programs, either a linear program or a second-order cone program. We complement our study with numerical simulations showing that the encoder/decoder pair performs remarkably well

    Ridgelets and the representation of mutilated Sobolev functions

    Get PDF
    We show that ridgelets, a system introduced in [E. J. Candes, Appl. Comput. Harmon. Anal., 6(1999), pp. 197–218], are optimal to represent smooth multivariate functions that may exhibit linear singularities. For instance, let {u · x − b > 0} be an arbitrary hyperplane and consider the singular function f(x) = 1{u·x−b>0}g(x), where g is compactly supported with finite Sobolev L2 norm ||g||Hs, s > 0. The ridgelet coefficient sequence of such an object is as sparse as if f were without singularity, allowing optimal partial reconstructions. For instance, the n-term approximation obtained by keeping the terms corresponding to the n largest coefficients in the ridgelet series achieves a rate of approximation of order n−s/d; the presence of the singularity does not spoil the quality of the ridgelet approximation. This is unlike all systems currently in use, especially Fourier or wavelet representations
    corecore