275 research outputs found

    Convex Graph Invariant Relaxations For Graph Edit Distance

    Get PDF
    The edit distance between two graphs is a widely used measure of similarity that evaluates the smallest number of vertex and edge deletions/insertions required to transform one graph to another. It is NP-hard to compute in general, and a large number of heuristics have been proposed for approximating this quantity. With few exceptions, these methods generally provide upper bounds on the edit distance between two graphs. In this paper, we propose a new family of computationally tractable convex relaxations for obtaining lower bounds on graph edit distance. These relaxations can be tailored to the structural properties of the particular graphs via convex graph invariants. Specific examples that we highlight in this paper include constraints on the graph spectrum as well as (tractable approximations of) the stability number and the maximum-cut values of graphs. We prove under suitable conditions that our relaxations are tight (i.e., exactly compute the graph edit distance) when one of the graphs consists of few eigenvalues. We also validate the utility of our framework on synthetic problems as well as real applications involving molecular structure comparison problems in chemistry.Comment: 27 pages, 7 figure

    Optimal Pricing in Networks with Externalities

    Get PDF
    We study the optimal pricing strategies of a monopolist selling a divisible good (service) to consumers who are embedded in a social network. A key feature of our model is that consumers experience a (positive) local network effect. In particular, each consumer's usage level depends directly on the usage of her neighbors in the social network structure. Thus, the monopolist's optimal pricing strategy may involve offering discounts to certain agents who have a central position in the underlying network. Our results can be summarized as follows. First, we consider a setting where the monopolist can offer individualized prices and derive a characterization of the optimal price for each consumer as a function of her network position. In particular, we show that it is optimal for the monopolist to charge each agent a price that consists of three components: (i) a nominal term that is independent of the network structure, (ii) a discount term proportional to the influence that this agent exerts over the rest of the social network (quantified by the agent's Bonacich centrality), and (iii) a markup term proportional to the influence that the network exerts on the agent. In the second part of the paper, we discuss the optimal strategy of a monopolist who can only choose a single uniform price for the good and derive an algorithm polynomial in the number of agents to compute such a price. Third, we assume that the monopolist can offer the good in two prices, full and discounted, and we study the problem of determining which set of consumers should be given the discount. We show that the problem is NP-hard; however, we provide an explicit characterization of the set of agents who should be offered the discounted price. Next, we describe an approximation algorithm for finding the optimal set of agents. We show that if the profit is nonnegative under any feasible price allocation, the algorithm guarantees at least 88% of the optimal profit. Finally, we highlight the value of network information by comparing the profits of a monopolist who does not take into account the network effects when choosing her pricing policy to those of a monopolist who uses this information optimally

    Dynamics in near-potential games

    Get PDF
    We consider discrete-time learning dynamics in finite strategic form games, and show that games that are close to a potential game inherit many of the dynamical properties of potential games. We first study the evolution of the sequence of pure strategy profiles under better/best response dynamics. We show that this sequence converges to a (pure) approximate equilibrium set whose size is a function of the “distance” to a given nearby potential game. We then focus on logit response dynamics, and provide a characterization of the limiting outcome in terms of the distance of the game to a given potential game and the corresponding potential function. Finally, we turn attention to fictitious play, and establish that in near-potential games the sequence of empirical frequencies of player actions converges to a neighborhood of (mixed) equilibria, where the size of the neighborhood increases according to the distance to the set of potential games

    Zero-Sum Polymatrix Games: A Generalization of Minmax

    Get PDF
    We show that in zero-sum polymatrix games, a multiplayer generalization of two-person zero-sum games, Nash equilibria can be found efficiently with linear programming. We also show that the set of coarse correlated equilibria collapses to the set of Nash equilibria. In contrast, other important properties of two-person zero-sum games are not preserved: Nash equilibrium payoffs need not be unique, and Nash equilibrium strategies need not be exchangeable or max-min.National Science Foundation (U.S.) (CCF-0953960)National Science Foundation (U.S.) (CCF-1101491

    Near-Optimal Power Control in Wireless Networks: A Potential Game Approach

    Get PDF
    We study power control in a multi-cell CDMA wireless system whereby self-interested users share a common spectrum and interfere with each other. Our objective is to design a power control scheme that achieves a (near) optimal power allocation with respect to any predetermined network objective (such as the maximization of sum-rate, or some fairness criterion). To obtain this, we introduce the potential-game approach that relies on approximating the underlying noncooperative game with a "close" potential game, for which prices that induce an optimal power allocation can be derived. We use the proximity of the original game with the approximate game to establish through Lyapunov-based analysis that natural user-update schemes (applied to the original game) converge within a neighborhood of the desired operating point, thereby inducing near-optimal performance in a dynamical sense. Additionally, we demonstrate through simulations that the actual performance can in practice be very close to optimal, even when the approximation is inaccurate. As a concrete example, we focus on the sum-rate objective, and evaluate our approach both theoretically and empirically.National Science Foundation (U.S.) (DMI-05459100)National Science Foundation (U.S.) (DMI-0545910)United States. Defense Advanced Research Projects Agency (ITMANET program)7th European Community Framework Programme (Marie Curie International Fellowship

    Pricing in Social Networks with Negative Externalities

    Full text link
    We study the problems of pricing an indivisible product to consumers who are embedded in a given social network. The goal is to maximize the revenue of the seller. We assume impatient consumers who buy the product as soon as the seller posts a price not greater than their values of the product. The product's value for a consumer is determined by two factors: a fixed consumer-specified intrinsic value and a variable externality that is exerted from the consumer's neighbors in a linear way. We study the scenario of negative externalities, which captures many interesting situations, but is much less understood in comparison with its positive externality counterpart. We assume complete information about the network, consumers' intrinsic values, and the negative externalities. The maximum revenue is in general achieved by iterative pricing, which offers impatient consumers a sequence of prices over time. We prove that it is NP-hard to find an optimal iterative pricing, even for unweighted tree networks with uniform intrinsic values. Complementary to the hardness result, we design a 2-approximation algorithm for finding iterative pricing in general weighted networks with (possibly) nonuniform intrinsic values. We show that, as an approximation to optimal iterative pricing, single pricing can work rather well for many interesting cases, but theoretically it can behave arbitrarily bad

    Existence of equilibria in countable games: an algebraic approach

    Full text link
    Although mixed extensions of finite games always admit equilibria, this is not the case for countable games, the best-known example being Wald's pick-the-larger-integer game. Several authors have provided conditions for the existence of equilibria in infinite games. These conditions are typically of topological nature and are rarely applicable to countable games. Here we establish an existence result for the equilibrium of countable games when the strategy sets are a countable group and the payoffs are functions of the group operation. In order to obtain the existence of equilibria, finitely additive mixed strategies have to be allowed. This creates a problem of selection of a product measure of mixed strategies. We propose a family of such selections and prove existence of an equilibrium that does not depend on the selection. As a byproduct we show that if finitely additive mixed strategies are allowed, then Wald's game admits an equilibrium. We also prove existence of equilibria for nontrivial extensions of matching-pennies and rock-scissors-paper. Finally we extend the main results to uncountable games

    Flows and Decompositions of Games: Harmonic and Potential Games

    Get PDF
    In this paper we introduce a novel flow representation for finite games in strategic form. This representation allows us to develop a canonical direct sum decomposition of an arbitrary game into three components, which we refer to as the potential, harmonic and nonstrategic components. We analyze natural classes of games that are induced by this decomposition, and in particular, focus on games with no harmonic component and games with no potential component. We show that the first class corresponds to the well-known potential games. We refer to the second class of games as harmonic games, and study the structural and equilibrium properties of this new class of games. Intuitively, the potential component of a game captures interactions that can equivalently be represented as a common interest game, while the harmonic part represents the conflicts between the interests of the players. We make this intuition precise, by studying the properties of these two classes, and show that indeed they have quite distinct and remarkable characteristics. For instance, while finite potential games always have pure Nash equilibria, harmonic games generically never do. Moreover, we show that the nonstrategic component does not affect the equilibria of a game, but plays a fundamental role in their efficiency properties, thus decoupling the location of equilibria and their payoff-related properties. Exploiting the properties of the decomposition framework, we obtain explicit expressions for the projections of games onto the subspaces of potential and harmonic games. This enables an extension of the properties of potential and harmonic games to "nearby" games. We exemplify this point by showing that the set of approximate equilibria of an arbitrary game can be characterized through the equilibria of its projection onto the set of potential games
    corecore