1,363 research outputs found
The solar wind structures associated with cosmic ray decreases and particle acceleration in 1978-1982
The time histories of particles in the energy range 1 MeV to 1 GeV at times of all greater than 3 percent cosmic ray decreases in the years 1978 to 1982 are studied. Essentially all 59 of the decreases commenced at or before the passages of interplanetary shocks, the majority of which accelerated energetic particles. We use the intensity-time profiles of the energetic particles to separate the cosmic ray decreases into four classes which we subsequently associate with four types of solar wind structures. Decreases in class 1 (15 events) and class 2 (26 events) can be associated with shocks which are driven by energetic coronal mass ejections. For class 1 events the ejecta is detected at 1 AU whereas this is not the case for class 2 events. The shock must therefore play a dominant role in producing the depression of cosmic rays in class 2 events. In all class 1 and 2 events (which comprise 69 percent of the total) the departure time of the ejection from the sun (and hence the location) can be determined from the rapid onset of energetic particles several days before the shock passage at Earth. The class 1 events originate from within 50 deg of central meridian. Class 3 events (10 decreases) can be attributed to less energetic ejections which are directed towards the Earth. In these events the ejecta is more important than the shock in causing a depression in the cosmic ray intensity. The remaining events (14 percent of the total) can be attributed to corotating streams which have ejecta material embedded in them
Comment on "Geoeffectiveness of halo coronal mass ejections" by N. Gopalswamy, S. Yashiro, and S. Akiyama
Comment on paper: Gopalswamy, N., S. Yashiro, and S. Akiyama (2007),
Geoeffectiveness of halo coronal mass ejections, J. Geophys. Res., 112, A06112,
doi:10.1029/2006JA012149
Gopalswamy et al. [2007] studied the geoeffectiveness of halo coronal mass
ejections (CMEs) on the basis of solar observations during 1996-2005 and found
that the geoeffectiveness of 229 frontside halo CMEs was 71%. Recently for
observations of 305 frontside halo CMEs during 1997-2003 the geoeffectiveness
was found to be 40% [Kim et al., 2005]. Complex analysis of both solar and
interplanetary measurements showed that the geoeffectiveness of frontside halo
CMEs is likely to be about 50% [Yermolaev et al., 2005; Yermolaev and
Yermolaev, 2006]. Gopalswamy et al. [2007] did not discuss possible causes of
this difference and were limited only to the general words: "The reason for the
conflicting results (geoeffectiveness of CMEs ranging from 35% to more than
80%) may be attributed to the different definition of halo CMEs and
geoeffectiveness." So, here we shall present our point of view on high
geoeffectivenees of CME obtained in paper by Gopalswamy et al. [2007]
Geoeffectiveness and efficiency of CIR, Sheath and ICME in generation of magnetic storms
We investigate relative role of various types of solar wind streams in
generation of magnetic storms. On the basis of the OMNI data of interplanetary
measurements for the period of 1976-2000 we analyze 798 geomagnetic storms with
Dst < -50 nT and their interplanetary sources: corotating interaction regions
(CIR), interplanetary CME (ICME) including magnetic clouds (MC) and Ejecta and
compression regions Sheath before both types of ICME. For various types of
solar wind we study following relative characteristics: occurrence rate; mass,
momentum, energy and magnetic fluxes; probability of generation of magnetic
storm (geoeffectiveness) and efficiency of process of this generation. Obtained
results show that despite magnetic clouds have lower occurrence rate and lower
efficiency than CIR and Sheath they play an essential role in generation of
magnetic storms due to higher geoeffectiveness of storm generation (i.e higher
probability to contain large and long-term southward IMF Bz component).Comment: 23 pages, 4 figures, 3 tables, submitted to JGR special issue
"Response of Geospace to High-Speed Streams
An Extreme Solar Event of 20 January 2005: Properties of the Flare and the Origin of Energetic Particles
The extreme solar and SEP event of 20 January 2005 is analyzed from two
perspectives. Firstly, we study features of the main phase of the flare, when
the strongest emissions from microwaves up to 200 MeV gamma-rays were observed.
Secondly, we relate our results to a long-standing controversy on the origin of
SEPs arriving at Earth, i.e., acceleration in flares, or shocks ahead of CMEs.
All emissions from microwaves up to 2.22 MeV line gamma-rays during the main
flare phase originated within a compact structure located just above sunspot
umbrae. A huge radio burst with a frequency maximum at 30 GHz was observed,
indicating the presence of a large number of energetic electrons in strong
magnetic fields. Thus, protons and electrons responsible for flare emissions
during its main phase were accelerated within the magnetic field of the active
region. The leading, impulsive parts of the GLE, and highest-energy gamma-rays
identified with pi^0-decay emission, are similar and correspond in time. The
origin of the pi^0-decay gamma-rays is argued to be the same as that of lower
energy emissions. We estimate the sky-plane speed of the CME to be 2000-2600
km/s, i.e., high, but of the same order as preceding non-GLE-related CMEs from
the same active region. Hence, the flare itself rather than the CME appears to
determine the extreme nature of this event. We conclude that the acceleration,
at least, to sub-relativistic energies, of electrons and protons, responsible
for both the flare emissions and the leading spike of SEP/GLE by 07 UT, are
likely to have occurred simultaneously within the flare region. We do not rule
out a probable contribution from particles accelerated in the CME-driven shock
for the leading GLE spike, which seemed to dominate later on.Comment: 34 pages, 14 Postscript figures. Solar Physics, accepted. A typo
corrected. The original publication is available at
http://www.springerlink.co
Decreased STARD10 expression is associated with defective insulin secretion in humans and mice
Genetic variants near ARAP1 (CENTD2) and STARD10 influence type 2 diabetes (T2D) risk. The risk alleles impair glucose-induced insulin secretion and, paradoxically but characteristically, are associated with decreased proinsulin:insulin ratios, indicating improved proinsulin conversion. Neither the identity of the causal variants nor the gene(s) through which risk is conferred have been firmly established. Whereas ARAP1 encodes a GTPase activating protein, STARD10 is a member of the steroidogenic acute regulatory protein (StAR)-related lipid transfer protein family. By integrating genetic fine-mapping and epigenomic annotation data and performing promoter-reporter and chromatin conformational capture (3C) studies in β cell lines, we localize the causal variant(s) at this locus to a 5 kb region that overlaps a stretch-enhancer active in islets. This region contains several highly correlated T2D-risk variants, including the rs140130268 indel. Expression QTL analysis of islet transcriptomes from three independent subject groups demonstrated that T2D-risk allele carriers displayed reduced levels of STARD10 mRNA, with no concomitant change in ARAP1 mRNA levels. Correspondingly, β-cell-selective deletion of StarD10 in mice led to impaired glucose-stimulated Ca2+ dynamics and insulin secretion and recapitulated the pattern of improved proinsulin processing observed at the human GWAS signal. Conversely, overexpression of StarD10 in the adult β cell improved glucose tolerance in high fat-fed animals. In contrast, manipulation of Arap1 in β cells had no impact on insulin secretion or proinsulin conversion in mice. This convergence of human and murine data provides compelling evidence that the T2D risk associated with variation at this locus is mediated through reduction in STARD10 expression in the β cell
Coronal Shock Waves, EUV waves, and Their Relation to CMEs. I. Reconciliation of "EIT waves", Type II Radio Bursts, and Leading Edges of CMEs
We show examples of excitation of coronal waves by flare-related abrupt
eruptions of magnetic rope structures. The waves presumably rapidly steepened
into shocks and freely propagated afterwards like decelerating blast waves that
showed up as Moreton waves and EUV waves. We propose a simple quantitative
description for such shock waves to reconcile their observed propagation with
drift rates of metric type II bursts and kinematics of leading edges of coronal
mass ejections (CMEs). Taking account of different plasma density falloffs for
propagation of a wave up and along the solar surface, we demonstrate a close
correspondence between drift rates of type II bursts and speeds of EUV waves,
Moreton waves, and CMEs observed in a few known events.Comment: 30 pages, 15 figures. Solar Physics, published online. The final
publication is available at http://www.springerlink.co
Klebsiella pneumoniae is able to trigger epithelial-mesenchymal transition process in cultured airway epithelial cells
The ability of some bacterial pathogens to activate Epithelial-Mesenchymal Transition normally is a consequence of the persistence of a local chronic inflammatory response or depends on a direct interaction of the pathogens with the host epithelial cells. In this study we monitored the abilities of the K. pneumoniae to activate the expression of genes related to EMT-like processes and the occurrence of phenotypic changes in airway epithelial cells during the early steps of cell infection. We describe changes in the production of intracellular reactive oxygen species and increased HIF-1α mRNA expression in cells exposed to K. pneumoniae infection. We also describe the upregulation of a set of transcription factors implicated in the EMT processes, such as Twist, Snail and ZEB, indicating that the morphological changes of epithelial cells already appreciable after few hours from the K. pneumoniae infection are tightly regulated by the activation of transcriptional pathways, driving epithelial cells to EMT. These effects appear to be effectively counteracted by resveratrol, an antioxidant that is able to exert a sustained scavenging of the intracellular ROS. This is the first report indicating that strains of K. pneumoniae may promote EMT-like programs through direct interaction with epithelial cells without the involvement of inflammatory cells
Magnetic Flux of EUV Arcade and Dimming Regions as a Relevant Parameter for Early Diagnostics of Solar Eruptions - Sources of Non-Recurrent Geomagnetic Storms and Forbush Decreases
This study aims at the early diagnostics of geoeffectiveness of coronal mass
ejections (CMEs) from quantitative parameters of the accompanying EUV dimming
and arcade events. We study events of the 23th solar cycle, in which major
non-recurrent geomagnetic storms (GMS) with Dst <-100 nT are sufficiently
reliably identified with their solar sources in the central part of the disk.
Using the SOHO/EIT 195 A images and MDI magnetograms, we select significant
dimming and arcade areas and calculate summarized unsigned magnetic fluxes in
these regions at the photospheric level. The high relevance of this eruption
parameter is displayed by its pronounced correlation with the Forbush decrease
(FD) magnitude, which, unlike GMSs, does not depend on the sign of the Bz
component but is determined by global characteristics of ICMEs. Correlations
with the same magnetic flux in the solar source region are found for the GMS
intensity (at the first step, without taking into account factors determining
the Bz component near the Earth), as well as for the temporal intervals between
the solar eruptions and the GMS onset and peak times. The larger the magnetic
flux, the stronger the FD and GMS intensities are and the shorter the ICME
transit time is. The revealed correlations indicate that the main quantitative
characteristics of major non-recurrent space weather disturbances are largely
determined by measurable parameters of solar eruptions, in particular, by the
magnetic flux in dimming areas and arcades, and can be tentatively estimated in
advance with a lead time from 1 to 4 days. For GMS intensity, the revealed
dependencies allow one to estimate a possible value, which can be expected if
the Bz component is negative.Comment: 27 pages, 5 figures. Accepted for publication in Solar Physic
Recommended from our members
What helps or hinders the transformation from a major tertiary center to a major trauma center? Identifying barriers and enablers using the Theoretical Domains Framework
BACKGROUND: Major Trauma Centers (MTCs), as part of a trauma system, improve survival and functional outcomes from injury. Developing such centers from current teaching hospitals is likely to generate diverse beliefs amongst staff. These may act as barriers or enablers. Prior identification of these may make the service development process more efficient. The importance of applying theory to systematically identify barriers and enablers to changing clinical practice in emergency medicine has been emphasized. This study systematically explored theory-based barriers and enablers towards implementing the transformation of a tertiary hospital into a MTC. Our goal was to demonstrate the use of a replicable method to identify targets that could be addressed to achieve a successful transformation from an organization evolved to provide a particular type of clinical care into a clinical system with different demands, requirements and expectations.
METHODS: The Theoretical Domains Framework (TDF) is a tool designed to elicit and analyze beliefs affecting behavior. Semi-structured interviews based around the TDF were conducted in a major tertiary hospital in Scotland due to become a MTC with a purposive sample of major stakeholders including clinicians and nurses from specialties involved in trauma care, clinical managers and administration. Belief statements were identified through qualitative analysis, and assessed for importance according to prevalence, discordance and evidence base.
RESULTS AND DISCUSSION: 1728 utterances were recorded and coded into 91 belief statements. 58 were classified as important barriers/enablers. There were major concerns about resource demands, with optimism conditional on these being met. Distracting priorities abound within the Emergency Department. Better communication is needed. Staff motivation is high and they should be engaged in skills development and developing performance improvement processes.
CONCLUSIONS: This study presents a systematic and replicable method of identifying theory-based barriers and enablers towards complex service development. It identifies multiple barriers/enablers that may serve as a basis for developing an implementation intervention to enhance the development of MTCs. This method can be used to address similar challenges in developing specialist centers or implementing clinical practice change in emergency care across both developing and developed countries
The Longitudinal Distribution of Solar Energetic Particles
Using observations from the High Energy Telescopes (HETs) on STEREO A and B and similar observations from SoHO, near-Earth, we have identified ~250 individual solar energetic particle events that include >14 MeV protons since the beginning of the STEREO mission [1]. Between the end of December 2009, when the STEREO A and B spacecraft were, respectively, ahead and behind Earth by ~ 65° in ecliptic longitude, and the end of December 2013, 43 different events were clearly detected at all three locations. The observed intensities of such an event are usually assumed to be Gaussian distributed as a function of the longitudes of the Parker Spiral footpoints at the Sun for each observer. This neglects the fact that the interplanetary magnetic field may have large deviations from Parker Spirals, e.g. due to coronal mass ejections from
prior events. Nonetheless, we have fit Gaussians to the peak intensities observed simultaneously at three spacecraft for all 43 events. The Gaussian peak intensity is poorly correlated with the corresponding CME speed and the FWHM is uncorrelated with the CME speed. Surprisingly, however, there appear to be distinctly non-random variations of the FWHM values from event to event
- …
