9,265 research outputs found
Measurement of prompt (2S) to J/ yield ratios in Pb-Pb and p-p collisions at = 2.76 TeV
The ratio between the prompt ψ(2S) and J/ψ yields, reconstructed via their decays into μ+μ-, is measured in Pb-Pb and p-p collisions at sNN=2.76 TeV. The analysis is based on Pb-Pb and p-p data samples collected by CMS at the Large Hadron Collider, corresponding to integrated luminosities of 150 μb-1 and 5.4 pb-1, respectively. The double ratio of measured yields (Nψ(2S)/NJ/ψ)Pb-Pb/(Nψ(2S)/NJ/ψ)p-p is computed in three Pb-Pb collision centrality bins and two kinematic ranges: one at midrapidity, |y|<1.6, covering the transverse momentum range 6.5<pT<30 GeV/c, and the other at forward rapidity, 1.6<|y|<2.4, extending to lower pT values, 3<pT<30 GeV/c. The centrality-integrated double ratio changes from 0.45±0.13(stat)±0.07(syst) in the first range to 1.67±0.34(stat)±0.27(syst) in the second. This difference is most pronounced in the most central collisions
The Evolution of FTK, a Real-Time Tracker for Hadron Collider Experiments
We describe the architecture evolution of the highly-parallel dedicated
processor FTK, which is driven by the simulation of LHC events at high
luminosity (1034 cm-2 s-1). FTK is able to provide precise on-line track
reconstruction for future hadronic collider experiments. The processor,
organized in a two-tiered pipelined architecture, execute very fast algorithms
based on the use of a large bank of pre-stored patterns of trajectory points
(first tier) in combination with full resolution track fitting to refine
pattern recognition and to determine off-line quality track parameters. We
describe here how the high luminosity simulation results have produced a new
organization of the hardware inside the FTK processor core.Comment: 11th ICATPP conferenc
Spatial-temporal correlations in the process to self-organized criticality
A new type of spatial-temporal correlation in the process approaching to the
self-organized criticality is investigated for the two simple models for
biological evolution. The change behaviors of the position with minimum barrier
are shown to be quantitatively different in the two models. Different results
of the correlation are given for the two models. We argue that the correlation
can be used, together with the power-law distributions, as criteria for
self-organized criticality.Comment: 3 pages in RevTeX, 3 eps figure
Cosmic ray tests of the D0 preshower detector
The D0 preshower detector consists of scintillator strips with embedded
wavelength-shifting fibers, and a readout using Visible Light Photon Counters.
The response to minimum ionizing particles has been tested with cosmic ray
muons. We report results on the gain calibration and light-yield distributions.
The spatial resolution is investigated taking into account the light sharing
between strips, the effects of multiple scattering and various systematic
uncertainties. The detection efficiency and noise contamination are also
investigated.Comment: 27 pages, 24 figures, submitted to NIM
Study of Z boson production in pPb collisions at =5.02TeV
The production of Z bosons in pPb collisions at = 5.02 TeV is studied by the CMS experiment via the electron and muon decay channels. The inclusive cross section is compared to pp collision predictions, and found to scale with the number of elementary nucleon-nucleon collisions. The differential cross sections as a function of the Z boson rapidity and transverse momentum are measured. Though they are found to be consistent within uncertainty with theoretical predictions both with and without nuclear effects, the forward-backward asymmetry suggests the presence of nuclear effects at large rapidities. These results provide new data for constraining nuclear parton distribution functions
Wearable Haptic Devices for Gait Re-education by Rhythmic Haptic Cueing
This research explores the development and evaluation of wearable haptic devices for gait sensing and rhythmic haptic cueing in the context of gait re-education for people with neurological and neurodegenerative conditions. Many people with long-term neurological and neurodegenerative conditions such as Stroke, Brain Injury, Multiple Sclerosis or Parkinson’s disease suffer from impaired walking gait pattern. Gait improvement can lead to better fluidity in walking, improved health outcomes, greater independence, and enhanced quality of life. Existing lab-based studies with wearable devices have shown that rhythmic haptic cueing can cause immediate improvements to gait features such as temporal symmetry, stride length, and walking speed. However, current wearable systems are unsuitable for self-managed use for in-the-wild applications with people having such conditions. This work aims to investigate the research question of how wearable haptic devices can help in long-term gait re-education using rhythmic haptic cueing. A longitudinal pilot study has been conducted with a brain trauma survivor, providing rhythmic haptic cueing using a wearable haptic device as a therapeutic intervention for a two-week period. Preliminary results comparing pre and post-intervention gait measurements have shown improvements in walking speed, temporal asymmetry, and stride length. The pilot study has raised an array of issues that require further study. This work aims to develop and evaluate prototype systems through an iterative design process to make possible the self-managed use of such devices in-the-wild. These systems will directly provide therapeutic intervention for gait re-education, offer enhanced information for therapists, remotely monitor dosage adherence and inform treatment and prognoses over the long-term. This research will evaluate the use of technology from the perspective of multiple stakeholders, including clinicians, carers and patients. This work has the potential to impact clinical practice nationwide and worldwide in neuro-physiotherapy
Development of FTK architecture: a fast hardware track trigger for the ATLAS detector
The Fast Tracker (FTK) is a proposed upgrade to the ATLAS trigger system that
will operate at full Level-1 output rates and provide high quality tracks
reconstructed over the entire detector by the start of processing in Level-2.
FTK solves the combinatorial challenge inherent to tracking by exploiting the
massive parallelism of Associative Memories (AM) that can compare inner
detector hits to millions of pre-calculated patterns simultaneously. The
tracking problem within matched patterns is further simplified by using
pre-computed linearized fitting constants and leveraging fast DSP's in modern
commercial FPGA's. Overall, FTK is able to compute the helix parameters for all
tracks in an event and apply quality cuts in approximately one millisecond. By
employing a pipelined architecture, FTK is able to continuously operate at
Level-1 rates without deadtime. The system design is defined and studied using
ATLAS full simulation. Reconstruction quality is evaluated for single muon
events with zero pileup, as well as WH events at the LHC design luminosity. FTK
results are compared with the tracking capability of an offline algorithm.Comment: To be published in the proceedings of DPF-2009, Detroit, MI, July
2009, eConf C09072
Direct Search for Charged Higgs Bosons in Decays of Top Quarks
We present a search for charged Higgs bosons in decays of pair-produced top
quarks in pbar p collisions at sqrt(s) = 1.8 TeV using 62.2 pb^-1 of data
recorded by the D0 detector at the Fermilab Tevatron collider. No evidence is
found for signal, and we exclude at 95% confidence most regions of the (M
higgs, tan beta) parameter space where the decay t->H b has a branching
fraction greater than 0.36 and B(H -> tau nu) is large.Comment: 11 pages, 4 figures, submitted to Phys. Rev. Let
- …
