722 research outputs found

    The relativistic correction of the quarkonium melting temperature with a holographic potential

    Full text link
    The relativistic correction of the AdS/CFT implied heavy quark potential is examined within the framework of the potential model. For the typical range of the coupling strength appropriate to heavy-ion collisions, we find the correction is significant in size and lowers the dissociation temperature of quarkonia.Comment: 11 pages, 2 tables in late

    Improved Wolf Pack Algorithm for Optimum Design of Truss Structures

    Get PDF
    In order to find a more effective method in structural optimization, an improved wolf pack optimization algorithm was proposed. In the traditional wolf pack algorithm, the problem of falling into local optimum and low precision often occurs. Therefore, the adaptive step size search and Levy's flight strategy theory were employed to overcome the premature flaw of the basic wolf pack algorithm. Firstly, the reasonable change of the adaptive step size improved the fineness of the search and effectively accelerated the convergence speed. Secondly, the search strategy of Levy's flight was adopted to expand the search scope and improved the global search ability of the algorithm. At last, to verify the performance of improved wolf pack algorithm, it was tested through simulation experiments and actual cases, and compared with other algorithms. Experiments show that the improved wolf pack algorithm has better global optimization ability. This study provides a more effective solution to structural optimization problems

    Single-photon-assisted entanglement concentration of a multi-photon system in a partially entangled W state with weak cross-Kerr nonlinearity

    Full text link
    We propose a nonlocal entanglement concentration protocol (ECP) for NN-photon systems in a partially entangled W state, resorting to some ancillary single photons and the parity-check measurement based on cross-Kerr nonlinearity. One party in quantum communication first performs a parity-check measurement on her photon in an NN-photon system and an ancillary photon, and then she picks up the even-parity instance for obtaining the standard W state. When she obtains an odd-parity instance, the system is in a less-entanglement state and it is the resource in the next round of entanglement concentration. By iterating the entanglement concentration process several times, the present ECP has the total success probability approaching to the limit in theory. The present ECP has the advantage of a high success probability. Moreover, the present ECP requires only the NN-photon system itself and some ancillary single photons, not two copies of the systems, which decreases the difficulty of its implementation largely in experiment. It maybe have good applications in quantum communication in future.Comment: 7 pages, 3 figure

    TRUSS STRUCTURE OPTIMIZATION BASED ON IMPROVED WOLF PACK ALGORITHM

    Get PDF
    Aiming at the optimization of truss structure, a wolf pack algorithm based on chaos and improved search strategy was proposed. The mathematical model of truss optimization was constructed, and the classical truss structure was optimized. The results were compared with those of other optimization algorithms. When selecting and updating the initial position of wolves, chaos idea was used to distribute the initial value evenly in the solution space; phase factor was introduced to optimize the formula of wolf detection; information interaction between wolves is increased and the number of runs is reduced. The numerical results show that the improved wolf pack algorithm has the characteristics of fewer parameters, simple programming, easy implementation, fast convergence speed, and can quickly find the optimal solution. It is suitable for the optimization design of the section size of space truss structures

    Coexistence of multiple strange attractors governed by different initial conditions in a deterministic system

    Get PDF
    Abstract: This paper presents a new four-dimension autonomous system which shows extraordinary dynamical properties . Chaotic attractor and periodic attractor or hyper-chaotic attractor and quasi-periodic attractor, which are governed by different initial conditions instead of the system parameters, can coexist in the deterministic system. These interesting phenomena are verified through numerical simulations and analyses including time series, phase portraits, Poincaré maps, bifurcation diagrams, and Lyapunov exponents

    A survey on wearable sensor modality centred human activity recognition in health care

    Get PDF
    Increased life expectancy coupled with declining birth rates is leading to an aging population structure. Aging-caused changes, such as physical or cognitive decline, could affect people's quality of life, result in injuries, mental health or the lack of physical activity. Sensor-based human activity recognition (HAR) is one of the most promising assistive technologies to support older people's daily life, which has enabled enormous potential in human-centred applications. Recent surveys in HAR either only focus on the deep learning approaches or one specific sensor modality. This survey aims to provide a more comprehensive introduction for newcomers and researchers to HAR. We first introduce the state-of-art sensor modalities in HAR. We look more into the techniques involved in each step of wearable sensor modality centred HAR in terms of sensors, activities, data pre-processing, feature learning and classification, including both conventional approaches and deep learning methods. In the feature learning section, we focus on both hand-crafted features and automatically learned features using deep networks. We also present the ambient-sensor-based HAR, including camera-based systems, and the systems which combine the wearable and ambient sensors. Finally, we identify the corresponding challenges in HAR to pose research problems for further improvement in HAR
    corecore