2,849 research outputs found

    Culture méditerranéenne: l'espace localisé dans l'œuvre de Georges Brassens

    Get PDF
    L'œuvre de G. Brassens prend en compte l'espace méditerranéen à trois échelles: le Bassin méditerranéen, le Golfe du Lion et la Ville de Sète. Un modèle est proposé pour chacune des trois

    Analisi della morfologia degli scavi a valle di rampe in condizioni di live bed.

    Get PDF
    Nella tesi si tratta lo studio dela morfologia degli scavi a valle delle rampe di dissipazione in pietrme in condizioni di trasporto solido nelle diverse configurazioni spaziali

    The United Nations and the Human Rights Issue

    Get PDF
    This paper demonstrates a new class of bugs that is likely to occur in enterprise OpenFlow deployments. In particular, step-by-step, reactive establishment of paths can cause network-wide inconsistencies or performance- and space-related inefficiencies. The cause for this behavior is inconsistent packet processing: as the packets travel through the network they do not encounter consistent state at the OpenFlow controller. To mitigate this problem, we propose to use transactional semantics at the controller to achieve consistent packet processing. We detail the challenges in achieving this goal (including the inability to directly apply database techniques), as well as a potentially promising approach. In particular, we envision the use of multi-commit transactions that could provide the necessary serialization and isolation properties without excessively reducing network performance.QC 20140707</p

    Natural Compression for Distributed Deep Learning

    Full text link
    Modern deep learning models are often trained in parallel over a collection of distributed machines to reduce training time. In such settings, communication of model updates among machines becomes a significant performance bottleneck and various lossy update compression techniques have been proposed to alleviate this problem. In this work, we introduce a new, simple yet theoretically and practically effective compression technique: {\em natural compression (NC)}. Our technique is applied individually to all entries of the to-be-compressed update vector and works by randomized rounding to the nearest (negative or positive) power of two, which can be computed in a "natural" way by ignoring the mantissa. We show that compared to no compression, NC increases the second moment of the compressed vector by not more than the tiny factor \nicefrac{9}{8}, which means that the effect of NC on the convergence speed of popular training algorithms, such as distributed SGD, is negligible. However, the communications savings enabled by NC are substantial, leading to {\em 33-4×4\times improvement in overall theoretical running time}. For applications requiring more aggressive compression, we generalize NC to {\em natural dithering}, which we prove is {\em exponentially better} than the common random dithering technique. Our compression operators can be used on their own or in combination with existing operators for a more aggressive combined effect, and offer new state-of-the-art both in theory and practice.Comment: 8 pages, 20 pages of Appendix, 6 Tables, 14 Figure

    Consistent SDNs through Network State Fuzzing

    Full text link
    The conventional wisdom is that a software-defined network (SDN) operates under the premise that the logically centralized control plane has an accurate representation of the actual data plane state. Unfortunately, bugs, misconfigurations, faults or attacks can introduce inconsistencies that undermine correct operation. Previous work in this area, however, lacks a holistic methodology to tackle this problem and thus, addresses only certain parts of the problem. Yet, the consistency of the overall system is only as good as its least consistent part. Motivated by an analogy of network consistency checking with program testing, we propose to add active probe-based network state fuzzing to our consistency check repertoire. Hereby, our system, PAZZ, combines production traffic with active probes to periodically test if the actual forwarding path and decision elements (on the data plane) correspond to the expected ones (on the control plane). Our insight is that active traffic covers the inconsistency cases beyond the ones identified by passive traffic. PAZZ prototype was built and evaluated on topologies of varying scale and complexity. Our results show that PAZZ requires minimal network resources to detect persistent data plane faults through fuzzing and localize them quickly while outperforming baseline approaches.Comment: Added three extra relevant references, the arXiv later was accepted in IEEE Transactions of Network and Service Management (TNSM), 2019 with the title "Towards Consistent SDNs: A Case for Network State Fuzzing

    Consistent SDNs through Network State Fuzzing

    No full text
    The conventional wisdom is that a software-defined network (SDN) operates under the premise that the logically centralized control plane has an accurate representation of the actual data plane state. Nevertheless, bugs, misconfigurations, faults or attacks can introduce inconsistencies that undermine correct operation. Previous work in this area, however, lacks a holistic methodology to tackle this problem and thus, addresses only certain parts of the problem. Yet, the consistency of the overall system is only as good as its least consistent part. Motivated by an analogy of network consistency checking with program testing, we propose to add active probe-based network state fuzzing to our consistency check repertoire. Hereby, our system, PAZZ, combines production traffic with active probes to continuously test if the actual forwarding path and decision elements (on the data plane) correspond to the expected ones (on the control plane). Our insight is that active traffic covers the inconsistency cases beyond the ones identified by passive traffic. PAZZ prototype was built and evaluated on topologies of varying scale and complexity. Our results show that PAZZ requires minimal network resources to detect persistent data plane faults through fuzzing and localize them quickly
    corecore