115 research outputs found
Cannabidiol regulation of learned fear: implications for treating anxiety-related disorders
Anxiety and trauma-related disorders are psychiatric diseases with a lifetime prevalence of up to 25%. Phobias and post-traumatic stress disorder (PTSD) are characterized by abnormal and persistent memories of fear-related contexts and cues. The effects of psychological treatments such as exposure therapy are often only temporary and medications can be ineffective and have adverse side effects. Growing evidence from human and animal studies indicates that cannabidiol, the main non-psychotomimetic phytocannabinoid present in Cannabis sativa, alleviates anxiety in paradigms assessing innate fear. More recently, the effects of cannabidiol on learned fear have been investigated in preclinical studies with translational relevance for phobias and PTSD. Here we review the findings from these studies, with an emphasis on cannabidiol regulation of contextual fear. The evidence indicates that cannabidiol reduces learned fear in different ways: (1) cannabidiol decreases fear expression acutely, (2) cannabidiol disrupts memory reconsolidation, leading to sustained fear attenuation upon memory retrieval, and (3) cannabidiol enhances extinction, the psychological process by which exposure therapy inhibits learned fear. We also present novel data on cannabidiol regulation of learned fear related to explicit cues, which indicates that auditory fear expression is also reduced acutely by cannabidiol. We conclude by outlining future directions for research to elucidate the neural circuit, psychological, cellular, and molecular mechanisms underlying the regulation of fear memory processing by cannabidiol. This line of investigation may lead to the development of cannabidiol as a novel therapeutic approach for treating anxiety and trauma-related disorders such as phobias and PTSD in the future
Astroglial CB1 Reveal Sex‐Specific Synaptic Effects of Amphetamine
The Nucleus Accumbens (NAc) is a critical brain region for the effects of psychostimulant drugs. Type-1 cannabinoid receptors
(CB1
), the main elements of the endocannabinoid system (ECS) in the brain, participate in these effects and modulate synaptic
functions in the NAc. Besides their neuronal expression, CB1 receptors are also present in astrocytes, where they contribute
to the regulation of synaptic plasticity and behavior. However, the impact of astroglial CB1 receptors on synaptic plasticity in
the NAc and on psychostimulant-induced synaptic and behavioral effects is currently unknown. This study shows that the
psychostimulant amphetamine impairs a form of astroglial CB1 receptor-dependent synaptic plasticity in the NAc of male, but
not female mice. Consistently, locomotor effects of amphetamine require astroglial CB1 receptors in male, but not female mice.
These results, by revealing unforeseen mechanisms underlying sex-dependent effects of amphetamine, pave the way to a better
understanding of the diverse impact of psychostimulants in women and men
Cells
Via activation of the cannabinoid type-1 (CB1) receptor, endogenous and exogenous cannabinoids modulate important biochemical and cellular processes in adipocytes. Several pieces of evidence suggest that alterations of mitochondrial physiology might be a possible mechanism underlying cannabinoids’ effects on adipocyte biology. Many reports suggest the presence of CB1 receptor mRNA in both white and brown adipose tissue, but the detailed subcellular localization of CB1 protein in adipose cells has so far been scarcely addressed. In this study, we show the presence of the functional CB1 receptor at different subcellular locations of adipocytes from epididymal white adipose tissue (eWAT) depots. We observed that CB1 is located at different subcellular levels, including the plasma membrane and in close association with mitochondria (mtCB1). Functional analysis in tissue homogenates and isolated mitochondria allowed us to reveal that cannabinoids negatively regulate complex-I-dependent oxygen consumption in eWAT. This effect requires mtCB1 activation and consequent regulation of the intramitochondrial cAMP-PKA pathway. Thus, CB1 receptors are functionally present at the mitochondrial level in eWAT adipocytes, adding another possible mechanism for peripheral regulation of energy metabolism. © 2022 by the authors.Role du recepteur CB1 mitocondriel du tissue adipeux dans la regulation de la balance energetiqueVieillissement et démence: un rôle hormonal?Development of pregnenolone derivatives as allosteric inhibitors of CB1 cannabinoid receptors for thetreatment of schizophrenia and psychotic syndrome
Olfactory bulb astrocytes link social transmission of stress to cognitive adaptation in male mice
Emotions and behavior can be affected by social chemosignals from conspecifics. For instance, olfactory signals from stressed individuals induce stress-like physiological and synaptic changes in naïve partners. Direct stress also alters cognition, but the impact of socially transmitted stress on memory processes is currently unknown. Here we show that exposure to chemosignals produced by stressed individuals is sufficient to impair memory retrieval in unstressed male mice. This requires astrocyte control of information in the olfactory bulb mediated by mitochondria-associated CB1 receptors (mtCB1). Targeted genetic manipulations, in vivo Ca2+ imaging and behavioral analyses reveal that mtCB1-dependent control of mitochondrial Ca2+ dynamics is necessary to process olfactory information from stressed partners and to define their cognitive consequences. Thus, olfactory bulb astrocytes provide a link between social odors and their behavioral meaning.We would like to thank Delphine Gonzales, Nathalie Aubailly, Ruby Racunica, Jean-Baptiste Bernard and all the personnel of the Animal Facilities of the NeuroCentre Magendie for mouse care. We also thank the genotyping platform of the Neurocentre Magendie for the help in the experiments. The microscopy was done in the Bordeaux Imaging Center a service unit of the CNRS-INSERM and Bordeaux University, member of the national infrastructure France BioImaging supported by the French National Research Agency (ANR-10-INBS-04). We thank all the members of Marsicano’s lab for useful discussions and for their invaluable support. We thank Toni-Lee Sterley and Tamas Fuzesi for providing the software to analyze social behaviors and their valuable input in the analysis. This study was funded by Inserm (to G.M); the European Research Council (Micabra, ERC-2017-AdG-786467, to G.M); Fondation pour la Recherche Medicale (DRM20101220445, to G.M; SPF201809006908 to U.S); the Human Frontiers Science Program (to G.M); Region Aquitaine (CanBrain, AAP2022A-2021-16763610 and −17219710 to G.M); French State/Agence Nationale de la Recherche (ERA-Net Neuron CanShank, ANR-21-NEU2-0001-04, to G.M), (CaMeLS, ANR-23-CE16-0022-01, to G.M), (Hippobese, ANR-23-CE14-0004-03, to G.M); the French government in the framework of the University of Bordeaux IdEx “Investments for the Future” program / GPR BRAIN_2030 (to P.G-S and G.M) and Bordeaux Collaboration Scheme (to P.G-S); La Caixa Research Health grant HR23-00793 (to G.M. and A. B-G); the Canadian Institutes for Health and Research (FDN-148440 to J.S.B); The Basque Government (IT1620-22 to P.G); Atención Primaria, Cronicidad y Promoción de la Salud, Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III (RD21/0009/0006 to P.G
Functional heterogeneity of POMC neurons relies on mTORC1 signaling.
Hypothalamic pro-opiomelanocortin (POMC) neurons are known to trigger satiety. However, these neuronal cells encompass heterogeneous subpopulations that release γ-aminobutyric acid (GABA), glutamate, or both neurotransmitters, whose functions are poorly defined. Using conditional mutagenesis and chemogenetics, we show that blockade of the energy sensor mechanistic target of rapamycin complex 1 (mTORC1) in POMC neurons causes hyperphagia by mimicking a cellular negative energy state. This is associated with decreased POMC-derived anorexigenic α-melanocyte-stimulating hormone and recruitment of POMC/GABAergic neurotransmission, which is restrained by cannabinoid type 1 receptor signaling. Electrophysiology and optogenetic studies further reveal that pharmacological blockade of mTORC1 simultaneously activates POMC/GABAergic neurons and inhibits POMC/glutamatergic ones, implying that the functional specificity of these subpopulations relies on mTORC1 activity. Finally, POMC neurons with different neurotransmitter profiles possess specific molecular signatures and spatial distribution. Altogether, these findings suggest that mTORC1 orchestrates the activity of distinct POMC neurons subpopulations to regulate feeding behavior
A lactate-dependent shift of glycolysis mediates synaptic and cognitive processes in male mice
Astrocytes control brain activity via both metabolic processes and glio- transmission, but the physiological links between these functions are scantly known. Here we show that endogenous activation of astrocyte type-1 canna- binoid (CB1) receptors determines a shift of glycolysis towards the lactate- dependent production of D-serine, thereby gating synaptic and cognitive functions in male mice. Mutant mice lacking the CB1 receptor gene in astro- cytes (GFAP-CB1-KO) are impaired in novel object recognition (NOR) memory. This phenotype is rescued by the gliotransmitter D-serine, by its precursor L- serine, and also by lactate and 3,5-DHBA, an agonist of the lactate receptor HCAR1. Such lactate-dependent effect is abolished when the astrocyte-specific phosphorylated-pathway (PP), which diverts glycolysis towards L-serine synthesis, is blocked. Consistently, lactate and 3,5-DHBA promoted the co- agonist binding site occupancy of CA1 post-synaptic NMDA receptors in hip- pocampal slices in a PP-dependent manner. Thus, a tight cross-talk between astrocytic energy metabolism and gliotransmission determines synaptic and cognitive processes
Cannabinoid-induced motor dysfunction via autophagy inhibition
The recreational and medical use of cannabis is largely increasing worldwide. Cannabis use, however, can cause adverse side effects, so conducting innovative studies aimed to understand and potentially reduce cannabis-evoked harms is important. Previous research conducted on cultured neural cells had supported that CNR1/CB1R (cannabinoid receptor 1), the main molecular target of cannabis, affects macroautophagy/autophagy. However, it was not known whether CNR1 controls autophagy in the brain in vivo, and, eventually, what the functional consequences of a potential CNR1-autophagy connection could be. We have now found that Δ9-tetrahydrocannabinol (THC), the major intoxicating constituent of cannabis, impairs autophagy in the mouse striatum. Administration of autophagy activators (specifically, the rapalog temsirolimus and the disaccharide trehalose) rescues THC-induced autophagy inhibition and motor dyscoordination. The combination of various genetic strategies in vivo supports the idea that CNR1 molecules located on neurons belonging to the direct (striatonigral) pathway are required for the autophagy- and motor-impairing activity of THC. By identifying autophagy as a mechanistic link between THC and motor performance, our findings may open a new conceptual view on how cannabis acts in the brain
The endocannabinoid system controls food intake via olfactory processes
Comment in Sensory systems: the hungry sense. [Nat Rev Neurosci. 2014] Inhaling: endocannabinoids and food intake. [Nat Neurosci. 2014]; International audience; Hunger arouses sensory perception, eventually leading to an increase in food intake, but the underlying mechanisms remain poorly understood. We found that cannabinoid type-1 (CB1) receptors promote food intake in fasted mice by increasing odor detection. CB1 receptors were abundantly expressed on axon terminals of centrifugal cortical glutamatergic neurons that project to inhibitory granule cells of the main olfactory bulb (MOB). Local pharmacological and genetic manipulations revealed that endocannabinoids and exogenous cannabinoids increased odor detection and food intake in fasted mice by decreasing excitatory drive from olfactory cortex areas to the MOB. Consistently, cannabinoid agonists dampened in vivo optogenetically stimulated excitatory transmission in the same circuit. Our data indicate that cortical feedback projections to the MOB crucially regulate food intake via CB1 receptor signaling, linking the feeling of hunger to stronger odor processing. Thus, CB1 receptor-dependent control of cortical feedback projections in olfactory circuits couples internal states to perception and behavior
Endocannabinoid Regulation of Acute and Protracted Nicotine Withdrawal: Effect of FAAH Inhibition
Evidence shows that the endocannabinoid system modulates the addictive properties of nicotine. In the present study, we hypothesized that spontaneous withdrawal resulting from removal of chronically implanted transdermal nicotine patches is regulated by the endocannabinoid system. A 7-day nicotine dependence procedure (5.2 mg/rat/day) elicited occurrence of reliable nicotine abstinence symptoms in Wistar rats. Somatic and affective withdrawal signs were observed at 16 and 34 hours following removal of nicotine patches, respectively. Further behavioral manifestations including decrease in locomotor activity and increased weight gain also occurred during withdrawal. Expression of spontaneous nicotine withdrawal was accompanied by fluctuation in levels of the endocannabinoid anandamide (AEA) in several brain structures including the amygdala, the hippocampus, the hypothalamus and the prefrontal cortex. Conversely, levels of 2-arachidonoyl-sn-glycerol were not significantly altered. Pharmacological inhibition of fatty acid amide hydrolase (FAAH), the enzyme responsible for the intracellular degradation of AEA, by URB597 (0.1 and 0.3 mg/kg, i.p.), reduced withdrawal-induced anxiety as assessed by the elevated plus maze test and the shock-probe defensive burying paradigm, but did not prevent the occurrence of somatic signs. Together, the results indicate that pharmacological strategies aimed at enhancing endocannabinoid signaling may offer therapeutic advantages to treat the negative affective state produced by nicotine withdrawal, which is critical for the maintenance of tobacco use
- …
