7 research outputs found
DNA immunization as a technology platform for monoclonal antibody induction
To combat the threat of many emerging infectious diseases, DNA immunization offers a unique and powerful approach to the production of high-quality monoclonal antibodies (mAbs) against various pathogens. Compared with traditional protein-based immunization approaches, DNA immunization is efficient for testing novel immunogen designs, does not require the production or purification of proteins from a pathogen or the use of recombinant protein technology and is effective at generating mAbs against conformation-sensitive targets. Although significant progress in the use of DNA immunization to generate mAbs has been made over the last two decades, the literature does not contain an updated summary of this experience. The current review provides a comprehensive analysis of the literature, including our own work, describing the use of DNA immunization to produce highly functional mAbs, in particular, those against emerging infectious diseases. Critical factors such as immunogen design, delivery approach, immunization schedule, use of immune modulators and the role of final boost immunization are discussed in detail
Norovirus infection and HBGA host genetic susceptibility in a birth community-cohort, Rio de Janeiro, Brazil
Norovirus has emerged as an important viral agent of acute pediatric gastroenteritis, with a growing genetic diversity reported in the last decades. Histo-blood group antigens (HBGAs) present on the surface of enterocytes are susceptibility factors for norovirus infection and differ between populations which could affects the epidemiology and evolution of these viruses. This study investigated the frequency, incidence and genetic diversity of noroviruses in a cohort of rotavirus A vaccinated children in association to the host HBGA (Secretor/Lewis) genetic susceptibility profile. Norovirus genogroups I and II (GI/GII) were screened by RT-qPCR in 569 stool samples from 132 children followed-up from birth to 11 months of age during 2014--2018. Noroviruses were identified in 21.2% of children enrolled in this study, with a norovirus detection rate of 5.6% (32/569), in 17.1% and 4.7% of acute diarrheic episodes (ADE) and non-ADE, respectively. The norovirus incidence was 5.8 infections per 100 child-months. Partial nucleotide sequencing characterized six different norovirus genotypes, with GII.4 Sydney 2012 being detected in 50% associated with three different polymerase genotypes (GII·P31, GII·P16 and GII·P4 New Orleans 2009). FUT3 genotyping was yielded seven new mutations in this population. A significant association between symptomatic norovirus infection and secretor profile could be inferred
